Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells
Blanka Halamoda Kenzaoui1, Maya R Vilà2, Josep M Miquel2, Feride Cengelli1, Lucienne Juillerat-Jeanneret11Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; 2Leitat Technological Center, Barcelona, SpainAbstract: Nanoparticles (NP...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c3bfc2ea1bd4cb3969c601b6cc97689 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6c3bfc2ea1bd4cb3969c601b6cc97689 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6c3bfc2ea1bd4cb3969c601b6cc976892021-12-02T00:58:21ZEvaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells1176-91141178-2013https://doaj.org/article/6c3bfc2ea1bd4cb3969c601b6cc976892012-03-01T00:00:00Zhttp://www.dovepress.com/evaluation-of-uptake-and-transport-of-cationic-and-anionic-ultrasmall--a9402https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Blanka Halamoda Kenzaoui1, Maya R Vilà2, Josep M Miquel2, Feride Cengelli1, Lucienne Juillerat-Jeanneret11Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; 2Leitat Technological Center, Barcelona, SpainAbstract: Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9–10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady™ intestinal barrier model or the more permeable mucus-secreting CacoGoblet™ model.Keywords: iron oxide nanoparticles, human colon cells, spheroids, transport, gastrointestinal barrierJuillerat-Jeanneret LVilà MRCengelli FMiquel JMHalamoda Kenzaoui BDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 1275-1286 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Juillerat-Jeanneret L Vilà MR Cengelli F Miquel JM Halamoda Kenzaoui B Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells |
description |
Blanka Halamoda Kenzaoui1, Maya R Vilà2, Josep M Miquel2, Feride Cengelli1, Lucienne Juillerat-Jeanneret11Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; 2Leitat Technological Center, Barcelona, SpainAbstract: Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9–10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady™ intestinal barrier model or the more permeable mucus-secreting CacoGoblet™ model.Keywords: iron oxide nanoparticles, human colon cells, spheroids, transport, gastrointestinal barrier |
format |
article |
author |
Juillerat-Jeanneret L Vilà MR Cengelli F Miquel JM Halamoda Kenzaoui B |
author_facet |
Juillerat-Jeanneret L Vilà MR Cengelli F Miquel JM Halamoda Kenzaoui B |
author_sort |
Juillerat-Jeanneret L |
title |
Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells |
title_short |
Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells |
title_full |
Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells |
title_fullStr |
Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells |
title_full_unstemmed |
Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells |
title_sort |
evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells |
publisher |
Dove Medical Press |
publishDate |
2012 |
url |
https://doaj.org/article/6c3bfc2ea1bd4cb3969c601b6cc97689 |
work_keys_str_mv |
AT juilleratjeanneretl evaluationofuptakeandtransportofcationicandanionicultrasmallironoxidenanoparticlesbyhumancoloncells AT vilampagravemr evaluationofuptakeandtransportofcationicandanionicultrasmallironoxidenanoparticlesbyhumancoloncells AT cengellif evaluationofuptakeandtransportofcationicandanionicultrasmallironoxidenanoparticlesbyhumancoloncells AT miqueljm evaluationofuptakeandtransportofcationicandanionicultrasmallironoxidenanoparticlesbyhumancoloncells AT halamodakenzaouib evaluationofuptakeandtransportofcationicandanionicultrasmallironoxidenanoparticlesbyhumancoloncells |
_version_ |
1718403389694410752 |