Estimating the success of re-identifications in incomplete datasets using generative models
Anonymization has been the main means of addressing privacy concerns in sharing medical and socio-demographic data. Here, the authors estimate the likelihood that a specific person can be re-identified in heavily incomplete datasets, casting doubt on the adequacy of current anonymization practices.
Guardado en:
Autores principales: | Luc Rocher, Julien M. Hendrickx, Yves-Alexandre de Montjoye |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c3c954c3a094ccd81b80c42685232b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Heed the data gap: Guidelines for using incomplete datasets in annual stream temperature analyses
por: Zachary C. Johnson, et al.
Publicado: (2021) -
Small facial image dataset augmentation using conditional GANs based on incomplete edge feature input
por: Shih-Kai Hung, et al.
Publicado: (2021) -
Estimating disease prevalence in large datasets using genetic risk scores
por: Benjamin D. Evans, et al.
Publicado: (2021) -
GVES: machine learning model for identification of prognostic genes with a small dataset
por: Soohyun Ko, et al.
Publicado: (2021) -
ReVisE: Remote visualization environment for large numerical simulation datasets.
por: Stepan Orlov, et al.
Publicado: (2021)