Motor and sensory features successfully decode autism spectrum disorder and combine with the original RDoC framework to boost diagnostic classification
Abstract Sensory processing and motor coordination atypicalities are not commonly identified as primary characteristics of autism spectrum disorder (ASD), nor are they well captured in the NIMH’s original Research Domain Criteria (RDoC) framework. Here, motor and sensory features performed similarly...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c42f08ecff84f54b291ca431f3fc93b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6c42f08ecff84f54b291ca431f3fc93b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6c42f08ecff84f54b291ca431f3fc93b2021-12-02T14:37:46ZMotor and sensory features successfully decode autism spectrum disorder and combine with the original RDoC framework to boost diagnostic classification10.1038/s41598-021-87455-w2045-2322https://doaj.org/article/6c42f08ecff84f54b291ca431f3fc93b2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87455-whttps://doaj.org/toc/2045-2322Abstract Sensory processing and motor coordination atypicalities are not commonly identified as primary characteristics of autism spectrum disorder (ASD), nor are they well captured in the NIMH’s original Research Domain Criteria (RDoC) framework. Here, motor and sensory features performed similarly to RDoC features in support vector classification of 30 ASD youth against 33 typically developing controls. Combining sensory with RDoC features boosted classification performance, achieving a Matthews Correlation Coefficient (MCC) of 0.949 and balanced accuracy (BAcc) of 0.971 (p = 0.00020, calculated against a permuted null distribution). Sensory features alone successfully classified ASD (MCC = 0.565, BAcc = 0.773, p = 0.0222) against a clinically relevant control group of 26 youth with Developmental Coordination Disorder (DCD) and were in fact required to decode against DCD above chance. These findings highlight the importance of sensory and motor features to the ASD phenotype and their relevance to the RDoC framework.Laura A. HarrisonAnastasiya KatsEmily KilroyChristiana ButeraAditya JayashankarUmit KelesLisa Aziz-ZadehNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Laura A. Harrison Anastasiya Kats Emily Kilroy Christiana Butera Aditya Jayashankar Umit Keles Lisa Aziz-Zadeh Motor and sensory features successfully decode autism spectrum disorder and combine with the original RDoC framework to boost diagnostic classification |
description |
Abstract Sensory processing and motor coordination atypicalities are not commonly identified as primary characteristics of autism spectrum disorder (ASD), nor are they well captured in the NIMH’s original Research Domain Criteria (RDoC) framework. Here, motor and sensory features performed similarly to RDoC features in support vector classification of 30 ASD youth against 33 typically developing controls. Combining sensory with RDoC features boosted classification performance, achieving a Matthews Correlation Coefficient (MCC) of 0.949 and balanced accuracy (BAcc) of 0.971 (p = 0.00020, calculated against a permuted null distribution). Sensory features alone successfully classified ASD (MCC = 0.565, BAcc = 0.773, p = 0.0222) against a clinically relevant control group of 26 youth with Developmental Coordination Disorder (DCD) and were in fact required to decode against DCD above chance. These findings highlight the importance of sensory and motor features to the ASD phenotype and their relevance to the RDoC framework. |
format |
article |
author |
Laura A. Harrison Anastasiya Kats Emily Kilroy Christiana Butera Aditya Jayashankar Umit Keles Lisa Aziz-Zadeh |
author_facet |
Laura A. Harrison Anastasiya Kats Emily Kilroy Christiana Butera Aditya Jayashankar Umit Keles Lisa Aziz-Zadeh |
author_sort |
Laura A. Harrison |
title |
Motor and sensory features successfully decode autism spectrum disorder and combine with the original RDoC framework to boost diagnostic classification |
title_short |
Motor and sensory features successfully decode autism spectrum disorder and combine with the original RDoC framework to boost diagnostic classification |
title_full |
Motor and sensory features successfully decode autism spectrum disorder and combine with the original RDoC framework to boost diagnostic classification |
title_fullStr |
Motor and sensory features successfully decode autism spectrum disorder and combine with the original RDoC framework to boost diagnostic classification |
title_full_unstemmed |
Motor and sensory features successfully decode autism spectrum disorder and combine with the original RDoC framework to boost diagnostic classification |
title_sort |
motor and sensory features successfully decode autism spectrum disorder and combine with the original rdoc framework to boost diagnostic classification |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/6c42f08ecff84f54b291ca431f3fc93b |
work_keys_str_mv |
AT lauraaharrison motorandsensoryfeaturessuccessfullydecodeautismspectrumdisorderandcombinewiththeoriginalrdocframeworktoboostdiagnosticclassification AT anastasiyakats motorandsensoryfeaturessuccessfullydecodeautismspectrumdisorderandcombinewiththeoriginalrdocframeworktoboostdiagnosticclassification AT emilykilroy motorandsensoryfeaturessuccessfullydecodeautismspectrumdisorderandcombinewiththeoriginalrdocframeworktoboostdiagnosticclassification AT christianabutera motorandsensoryfeaturessuccessfullydecodeautismspectrumdisorderandcombinewiththeoriginalrdocframeworktoboostdiagnosticclassification AT adityajayashankar motorandsensoryfeaturessuccessfullydecodeautismspectrumdisorderandcombinewiththeoriginalrdocframeworktoboostdiagnosticclassification AT umitkeles motorandsensoryfeaturessuccessfullydecodeautismspectrumdisorderandcombinewiththeoriginalrdocframeworktoboostdiagnosticclassification AT lisaazizzadeh motorandsensoryfeaturessuccessfullydecodeautismspectrumdisorderandcombinewiththeoriginalrdocframeworktoboostdiagnosticclassification |
_version_ |
1718390956337659904 |