Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study
Intelligent integration of decentralised energy resources, local storage and direct consumption are key factors in achieving the transformation of the energy system. In this study, we present a modular simulation concept that allows the planning of decentralised energy systems for buildings and buil...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c5a648868ef4bed890afb5b69ccf629 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6c5a648868ef4bed890afb5b69ccf629 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6c5a648868ef4bed890afb5b69ccf6292021-11-11T15:43:38ZIntegrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study10.3390/en142168741996-1073https://doaj.org/article/6c5a648868ef4bed890afb5b69ccf6292021-10-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/21/6874https://doaj.org/toc/1996-1073Intelligent integration of decentralised energy resources, local storage and direct consumption are key factors in achieving the transformation of the energy system. In this study, we present a modular simulation concept that allows the planning of decentralised energy systems for buildings and building blocks. In comparison to related studies, we use a simulation model for energy planning with a high time-resolution from the perspective of the energy system planner. In this study, we address the challenges of the grid connection in combination with an increasing number of electric vehicles (EV) in the future. The here developed model is applied for an innovative building block in Germany with a photovoltaic (PV) system, a combined heat and power (CHP) unit, battery storage and electric vehicles. The results of the simulation are validated with real-life data to illustrate the practical relevance and show that our simulation model is able to support the planning of decentralised energy systems. We demonstrate that without anticipating future electric vehicle charging, the system configurations could be sub-optimal if complete self-sufficiency is the objective: in our case study, the rate of self-sufficiency of the net-zero energy building will be lowered from 100% to 91% if considering electric vehicles. Furthermore, our simulation shows that a peak minimising operation strategy with a battery can prevent grid overloads caused by EV charging in the future. Simulating different battery operation strategies can further help to implement the most useful strategy, without interruption of the current operation.Georg GöhlerAnna-Lena KlinglerFlorian KlausmannDieter SpathMDPI AGarticledecentralised energy systemself-consumptionmodellingreal-life demonstrationelectric vehiclesstationary batteryTechnologyTENEnergies, Vol 14, Iss 6874, p 6874 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
decentralised energy system self-consumption modelling real-life demonstration electric vehicles stationary battery Technology T |
spellingShingle |
decentralised energy system self-consumption modelling real-life demonstration electric vehicles stationary battery Technology T Georg Göhler Anna-Lena Klingler Florian Klausmann Dieter Spath Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study |
description |
Intelligent integration of decentralised energy resources, local storage and direct consumption are key factors in achieving the transformation of the energy system. In this study, we present a modular simulation concept that allows the planning of decentralised energy systems for buildings and building blocks. In comparison to related studies, we use a simulation model for energy planning with a high time-resolution from the perspective of the energy system planner. In this study, we address the challenges of the grid connection in combination with an increasing number of electric vehicles (EV) in the future. The here developed model is applied for an innovative building block in Germany with a photovoltaic (PV) system, a combined heat and power (CHP) unit, battery storage and electric vehicles. The results of the simulation are validated with real-life data to illustrate the practical relevance and show that our simulation model is able to support the planning of decentralised energy systems. We demonstrate that without anticipating future electric vehicle charging, the system configurations could be sub-optimal if complete self-sufficiency is the objective: in our case study, the rate of self-sufficiency of the net-zero energy building will be lowered from 100% to 91% if considering electric vehicles. Furthermore, our simulation shows that a peak minimising operation strategy with a battery can prevent grid overloads caused by EV charging in the future. Simulating different battery operation strategies can further help to implement the most useful strategy, without interruption of the current operation. |
format |
article |
author |
Georg Göhler Anna-Lena Klingler Florian Klausmann Dieter Spath |
author_facet |
Georg Göhler Anna-Lena Klingler Florian Klausmann Dieter Spath |
author_sort |
Georg Göhler |
title |
Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study |
title_short |
Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study |
title_full |
Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study |
title_fullStr |
Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study |
title_full_unstemmed |
Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study |
title_sort |
integrated modelling of decentralised energy supply in combination with electric vehicle charging in a real-life case study |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/6c5a648868ef4bed890afb5b69ccf629 |
work_keys_str_mv |
AT georggohler integratedmodellingofdecentralisedenergysupplyincombinationwithelectricvehiclecharginginareallifecasestudy AT annalenaklingler integratedmodellingofdecentralisedenergysupplyincombinationwithelectricvehiclecharginginareallifecasestudy AT florianklausmann integratedmodellingofdecentralisedenergysupplyincombinationwithelectricvehiclecharginginareallifecasestudy AT dieterspath integratedmodellingofdecentralisedenergysupplyincombinationwithelectricvehiclecharginginareallifecasestudy |
_version_ |
1718434088368472064 |