Revealing ferroelectric switching character using deep recurrent neural networks

The scale and dimensionality of imaging data means information is commonly overlooked. Here, using recurrent neural networks we understand temporal dependencies in hyperspectral imagery, enabling the observation of differences in ferroelectric switching mechanisms in PbZr0.2Ti0.8O3 thin films due to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joshua C. Agar, Brett Naul, Shishir Pandya, Stefan van der Walt, Joshua Maher, Yao Ren, Long-Qing Chen, Sergei V. Kalinin, Rama K. Vasudevan, Ye Cao, Joshua S. Bloom, Lane W. Martin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/6c60e037e5014ff79246798588ae89fa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6c60e037e5014ff79246798588ae89fa
record_format dspace
spelling oai:doaj.org-article:6c60e037e5014ff79246798588ae89fa2021-12-02T15:35:35ZRevealing ferroelectric switching character using deep recurrent neural networks10.1038/s41467-019-12750-02041-1723https://doaj.org/article/6c60e037e5014ff79246798588ae89fa2019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12750-0https://doaj.org/toc/2041-1723The scale and dimensionality of imaging data means information is commonly overlooked. Here, using recurrent neural networks we understand temporal dependencies in hyperspectral imagery, enabling the observation of differences in ferroelectric switching mechanisms in PbZr0.2Ti0.8O3 thin films due to formation of charged domain walls.Joshua C. AgarBrett NaulShishir PandyaStefan van der WaltJoshua MaherYao RenLong-Qing ChenSergei V. KalininRama K. VasudevanYe CaoJoshua S. BloomLane W. MartinNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Joshua C. Agar
Brett Naul
Shishir Pandya
Stefan van der Walt
Joshua Maher
Yao Ren
Long-Qing Chen
Sergei V. Kalinin
Rama K. Vasudevan
Ye Cao
Joshua S. Bloom
Lane W. Martin
Revealing ferroelectric switching character using deep recurrent neural networks
description The scale and dimensionality of imaging data means information is commonly overlooked. Here, using recurrent neural networks we understand temporal dependencies in hyperspectral imagery, enabling the observation of differences in ferroelectric switching mechanisms in PbZr0.2Ti0.8O3 thin films due to formation of charged domain walls.
format article
author Joshua C. Agar
Brett Naul
Shishir Pandya
Stefan van der Walt
Joshua Maher
Yao Ren
Long-Qing Chen
Sergei V. Kalinin
Rama K. Vasudevan
Ye Cao
Joshua S. Bloom
Lane W. Martin
author_facet Joshua C. Agar
Brett Naul
Shishir Pandya
Stefan van der Walt
Joshua Maher
Yao Ren
Long-Qing Chen
Sergei V. Kalinin
Rama K. Vasudevan
Ye Cao
Joshua S. Bloom
Lane W. Martin
author_sort Joshua C. Agar
title Revealing ferroelectric switching character using deep recurrent neural networks
title_short Revealing ferroelectric switching character using deep recurrent neural networks
title_full Revealing ferroelectric switching character using deep recurrent neural networks
title_fullStr Revealing ferroelectric switching character using deep recurrent neural networks
title_full_unstemmed Revealing ferroelectric switching character using deep recurrent neural networks
title_sort revealing ferroelectric switching character using deep recurrent neural networks
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/6c60e037e5014ff79246798588ae89fa
work_keys_str_mv AT joshuacagar revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT brettnaul revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT shishirpandya revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT stefanvanderwalt revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT joshuamaher revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT yaoren revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT longqingchen revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT sergeivkalinin revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT ramakvasudevan revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT yecao revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT joshuasbloom revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
AT lanewmartin revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks
_version_ 1718386538317873152