Revealing ferroelectric switching character using deep recurrent neural networks
The scale and dimensionality of imaging data means information is commonly overlooked. Here, using recurrent neural networks we understand temporal dependencies in hyperspectral imagery, enabling the observation of differences in ferroelectric switching mechanisms in PbZr0.2Ti0.8O3 thin films due to...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c60e037e5014ff79246798588ae89fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6c60e037e5014ff79246798588ae89fa |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6c60e037e5014ff79246798588ae89fa2021-12-02T15:35:35ZRevealing ferroelectric switching character using deep recurrent neural networks10.1038/s41467-019-12750-02041-1723https://doaj.org/article/6c60e037e5014ff79246798588ae89fa2019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12750-0https://doaj.org/toc/2041-1723The scale and dimensionality of imaging data means information is commonly overlooked. Here, using recurrent neural networks we understand temporal dependencies in hyperspectral imagery, enabling the observation of differences in ferroelectric switching mechanisms in PbZr0.2Ti0.8O3 thin films due to formation of charged domain walls.Joshua C. AgarBrett NaulShishir PandyaStefan van der WaltJoshua MaherYao RenLong-Qing ChenSergei V. KalininRama K. VasudevanYe CaoJoshua S. BloomLane W. MartinNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Joshua C. Agar Brett Naul Shishir Pandya Stefan van der Walt Joshua Maher Yao Ren Long-Qing Chen Sergei V. Kalinin Rama K. Vasudevan Ye Cao Joshua S. Bloom Lane W. Martin Revealing ferroelectric switching character using deep recurrent neural networks |
description |
The scale and dimensionality of imaging data means information is commonly overlooked. Here, using recurrent neural networks we understand temporal dependencies in hyperspectral imagery, enabling the observation of differences in ferroelectric switching mechanisms in PbZr0.2Ti0.8O3 thin films due to formation of charged domain walls. |
format |
article |
author |
Joshua C. Agar Brett Naul Shishir Pandya Stefan van der Walt Joshua Maher Yao Ren Long-Qing Chen Sergei V. Kalinin Rama K. Vasudevan Ye Cao Joshua S. Bloom Lane W. Martin |
author_facet |
Joshua C. Agar Brett Naul Shishir Pandya Stefan van der Walt Joshua Maher Yao Ren Long-Qing Chen Sergei V. Kalinin Rama K. Vasudevan Ye Cao Joshua S. Bloom Lane W. Martin |
author_sort |
Joshua C. Agar |
title |
Revealing ferroelectric switching character using deep recurrent neural networks |
title_short |
Revealing ferroelectric switching character using deep recurrent neural networks |
title_full |
Revealing ferroelectric switching character using deep recurrent neural networks |
title_fullStr |
Revealing ferroelectric switching character using deep recurrent neural networks |
title_full_unstemmed |
Revealing ferroelectric switching character using deep recurrent neural networks |
title_sort |
revealing ferroelectric switching character using deep recurrent neural networks |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/6c60e037e5014ff79246798588ae89fa |
work_keys_str_mv |
AT joshuacagar revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT brettnaul revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT shishirpandya revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT stefanvanderwalt revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT joshuamaher revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT yaoren revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT longqingchen revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT sergeivkalinin revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT ramakvasudevan revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT yecao revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT joshuasbloom revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks AT lanewmartin revealingferroelectricswitchingcharacterusingdeeprecurrentneuralnetworks |
_version_ |
1718386538317873152 |