Pseudo-Invariant Feature-Based Linear Regression Model (PIF-LRM): An Effective Normalization Method to Evaluate Urbanization Impacts on Land Surface Temperature Changes
The Landsat land surface temperature (LST) product is widely used to understand the impact of urbanization on surface temperature changes. However, directly comparing multi-temporal Landsat LST is challenging, as the observed LST might be strongly affected by climatic factors. This study validated t...
Guardado en:
Autores principales: | Zhengwu Cai, Chao Fan, Falin Chen, Xiaoma Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c62c51507b846c7a5357fe9b5709151 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Changes of Extreme Precipitation and Possible Influence of ENSO Events in a Humid Basin in China
por: Xiaoxia Yang, et al.
Publicado: (2021) -
Spatial Distributions of Atmospheric Ammonia in a Rural Area in South Korea and the Associated Impact on a Nearby Urban Area
por: Sangmin Oh, et al.
Publicado: (2021) -
Intraseasonal variability of ocean surface wind waves in the western South Atlantic: the role of cyclones and the Pacific South American pattern
por: D. K. Sasaki, et al.
Publicado: (2021) -
Dynamical drivers of Greenland blocking in climate models
por: C. Michel, et al.
Publicado: (2021) -
Characteristics of extratropical cyclones and precursors to windstorms in northern Europe
por: T. K. Laurila, et al.
Publicado: (2021)