The effect of dietary supplementation with high- or low-dose omega-3 fatty acid on inflammatory pathology after traumatic brain injury in rats
This study investigated dietary supplementation as a prophylactic for neuroinflammation following traumatic brain injury (TBI) in a preclinical model. Adult male Sprague-Dawley rats received 30 days of supplementation with either water or two dietary supplements. The first consisted of high-dose ome...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c67c9c3124b43fcaaa28eab419aae7c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This study investigated dietary supplementation as a prophylactic for neuroinflammation following traumatic brain injury (TBI) in a preclinical model. Adult male Sprague-Dawley rats received 30 days of supplementation with either water or two dietary supplements. The first consisted of high-dose omega-3 fatty acid (O3FA) (supplement A) along with vitamin D3 and vitamin E. The second had the same ingredients at different doses with an addition of cannabidiol (supplement B). Rats were subjected to an impact TBI and then euthanized 7 days post-injury and neuroinflammation quantified by histological detection of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation, and CD68, a marker of microglial activity. There was a trend toward increased GFAP staining in injured, unsupplemented animals as compared to sham, unsupplemented animals, consistent with increased activation of astrocytes in response to trauma which was reversed by supplement A but not by supplement B. The pattern of CD68 staining across groups was similar to that of GFAP staining. There was a trend toward an increase in the injured unsupplemented group, relative to sham which was reversed by supplement A but not by supplement B. CD68 staining in injured animals was concentrated in the perivascular domain. The consistency between trends across different measures of neuroinflammation showing benefits of high-dose O3FA supplementation following TBI suggests that the observed effects are real. These findings are preliminary, but they justify further study to determine the functional benefits associated with improvements in histological outcomes and understand associated dose-response curves. |
---|