Polygenic prediction via Bayesian regression and continuous shrinkage priors

Polygenic risk scores (PRS) have the potential to predict complex diseases and traits from genetic data. Here, Ge et al. develop PRS-CS which uses a Bayesian regression framework, continuous shrinkage (CS) priors and an external LD reference panel for polygenic prediction of binary and quantitative...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tian Ge, Chia-Yen Chen, Yang Ni, Yen-Chen Anne Feng, Jordan W. Smoller
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/6c6882b541884b08be03470e789b8afe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6c6882b541884b08be03470e789b8afe
record_format dspace
spelling oai:doaj.org-article:6c6882b541884b08be03470e789b8afe2021-12-02T16:57:31ZPolygenic prediction via Bayesian regression and continuous shrinkage priors10.1038/s41467-019-09718-52041-1723https://doaj.org/article/6c6882b541884b08be03470e789b8afe2019-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09718-5https://doaj.org/toc/2041-1723Polygenic risk scores (PRS) have the potential to predict complex diseases and traits from genetic data. Here, Ge et al. develop PRS-CS which uses a Bayesian regression framework, continuous shrinkage (CS) priors and an external LD reference panel for polygenic prediction of binary and quantitative traits from GWAS summary statistics.Tian GeChia-Yen ChenYang NiYen-Chen Anne FengJordan W. SmollerNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tian Ge
Chia-Yen Chen
Yang Ni
Yen-Chen Anne Feng
Jordan W. Smoller
Polygenic prediction via Bayesian regression and continuous shrinkage priors
description Polygenic risk scores (PRS) have the potential to predict complex diseases and traits from genetic data. Here, Ge et al. develop PRS-CS which uses a Bayesian regression framework, continuous shrinkage (CS) priors and an external LD reference panel for polygenic prediction of binary and quantitative traits from GWAS summary statistics.
format article
author Tian Ge
Chia-Yen Chen
Yang Ni
Yen-Chen Anne Feng
Jordan W. Smoller
author_facet Tian Ge
Chia-Yen Chen
Yang Ni
Yen-Chen Anne Feng
Jordan W. Smoller
author_sort Tian Ge
title Polygenic prediction via Bayesian regression and continuous shrinkage priors
title_short Polygenic prediction via Bayesian regression and continuous shrinkage priors
title_full Polygenic prediction via Bayesian regression and continuous shrinkage priors
title_fullStr Polygenic prediction via Bayesian regression and continuous shrinkage priors
title_full_unstemmed Polygenic prediction via Bayesian regression and continuous shrinkage priors
title_sort polygenic prediction via bayesian regression and continuous shrinkage priors
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/6c6882b541884b08be03470e789b8afe
work_keys_str_mv AT tiange polygenicpredictionviabayesianregressionandcontinuousshrinkagepriors
AT chiayenchen polygenicpredictionviabayesianregressionandcontinuousshrinkagepriors
AT yangni polygenicpredictionviabayesianregressionandcontinuousshrinkagepriors
AT yenchenannefeng polygenicpredictionviabayesianregressionandcontinuousshrinkagepriors
AT jordanwsmoller polygenicpredictionviabayesianregressionandcontinuousshrinkagepriors
_version_ 1718382505040543744