Polygenic prediction via Bayesian regression and continuous shrinkage priors
Polygenic risk scores (PRS) have the potential to predict complex diseases and traits from genetic data. Here, Ge et al. develop PRS-CS which uses a Bayesian regression framework, continuous shrinkage (CS) priors and an external LD reference panel for polygenic prediction of binary and quantitative...
Guardado en:
Autores principales: | Tian Ge, Chia-Yen Chen, Yang Ni, Yen-Chen Anne Feng, Jordan W. Smoller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c6882b541884b08be03470e789b8afe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improved polygenic prediction by Bayesian multiple regression on summary statistics
por: Luke R. Lloyd-Jones, et al.
Publicado: (2019) -
Shrinkage in the Bayesian analysis of the GGE model: A case study with simulation.
por: Luciano Antonio de Oliveira, et al.
Publicado: (2021) -
The assessment of Levenberg–Marquardt and Bayesian Framework training algorithm for prediction of concrete shrinkage by the artificial neural network
por: Hosein Garoosiha, et al.
Publicado: (2019) -
Bayesian classification and regression trees for predicting incidence of cryptosporidiosis.
por: Wenbiao Hu, et al.
Publicado: (2011) -
Bayesian ridge regression shows the best fit for SSR markers in Psidium guajava among Bayesian models
por: Flavia Alves da Silva, et al.
Publicado: (2021)