Peptide barcoding for one-pot evaluation of sequence–function relationships of nanobodies

Abstract Optimisation of protein binders relies on laborious screening processes. Investigation of sequence–function relationships of protein binders is particularly slow, since mutants are purified and evaluated individually. Here we developed peptide barcoding, a high-throughput approach for accur...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yusei Matsuzaki, Wataru Aoki, Takumi Miyazaki, Shunsuke Aburaya, Yuta Ohtani, Kaho Kajiwara, Naoki Koike, Hiroyoshi Minakuchi, Natsuko Miura, Tetsuya Kadonosono, Mitsuyoshi Ueda
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6ca696081ad148fc8e2a41f6d690936f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Optimisation of protein binders relies on laborious screening processes. Investigation of sequence–function relationships of protein binders is particularly slow, since mutants are purified and evaluated individually. Here we developed peptide barcoding, a high-throughput approach for accurate investigation of sequence–function relationships of hundreds of protein binders at once. Our approach is based on combining the generation of a mutagenised nanobody library fused with unique peptide barcodes, the formation of nanobody–antigen complexes at different ratios, their fine fractionation by size-exclusion chromatography and quantification of peptide barcodes by targeted proteomics. Applying peptide barcoding to an anti-GFP nanobody as a model, we successfully identified residues important for the binding affinity of anti-GFP nanobody at once. Peptide barcoding discriminated subtle changes in K D at the order of nM to sub-nM. Therefore, peptide barcoding is a powerful tool for engineering protein binders, enabling reliable one-pot evaluation of sequence–function relationships.