Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception
Abstract The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have sho...
Guardado en:
Autores principales: | Anna Kutschireiter, Simone Carlo Surace, Henning Sprekeler, Jean-Pascal Pfister |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ca9bd6f654040eeb7e72038e632eeb2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
por: Nicolas Frémaux, et al.
Publicado: (2013) -
The neural dynamics of hierarchical Bayesian causal inference in multisensory perception
por: Tim Rohe, et al.
Publicado: (2019) -
From birdsong to human speech recognition: bayesian inference on a hierarchy of nonlinear dynamical systems.
por: Izzet B Yildiz, et al.
Publicado: (2013) -
Software Engineering-Based Design for a Bayesian Spam Filter
por: Mumtaz Mohammed Ali AL-Mukhtar
Publicado: (2010) -
Deep learning for universal linear embeddings of nonlinear dynamics
por: Bethany Lusch, et al.
Publicado: (2018)