Learning from data to design functional materials without inversion symmetry

Computational design of functional materials with broken inversion symmetry is a complex task. Here, the authors demonstrate an approach that integrates symmetry analysis, data science methods, and density functional theory to accelerate the selection and identification process in complex oxides.

Guardado en:
Detalles Bibliográficos
Autores principales: Prasanna V. Balachandran, Joshua Young, Turab Lookman, James M. Rondinelli
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/6caa49546c9f44e8b3a0551c932bbc54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6caa49546c9f44e8b3a0551c932bbc54
record_format dspace
spelling oai:doaj.org-article:6caa49546c9f44e8b3a0551c932bbc542021-12-02T15:38:38ZLearning from data to design functional materials without inversion symmetry10.1038/ncomms142822041-1723https://doaj.org/article/6caa49546c9f44e8b3a0551c932bbc542017-02-01T00:00:00Zhttps://doi.org/10.1038/ncomms14282https://doaj.org/toc/2041-1723Computational design of functional materials with broken inversion symmetry is a complex task. Here, the authors demonstrate an approach that integrates symmetry analysis, data science methods, and density functional theory to accelerate the selection and identification process in complex oxides.Prasanna V. BalachandranJoshua YoungTurab LookmanJames M. RondinelliNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Prasanna V. Balachandran
Joshua Young
Turab Lookman
James M. Rondinelli
Learning from data to design functional materials without inversion symmetry
description Computational design of functional materials with broken inversion symmetry is a complex task. Here, the authors demonstrate an approach that integrates symmetry analysis, data science methods, and density functional theory to accelerate the selection and identification process in complex oxides.
format article
author Prasanna V. Balachandran
Joshua Young
Turab Lookman
James M. Rondinelli
author_facet Prasanna V. Balachandran
Joshua Young
Turab Lookman
James M. Rondinelli
author_sort Prasanna V. Balachandran
title Learning from data to design functional materials without inversion symmetry
title_short Learning from data to design functional materials without inversion symmetry
title_full Learning from data to design functional materials without inversion symmetry
title_fullStr Learning from data to design functional materials without inversion symmetry
title_full_unstemmed Learning from data to design functional materials without inversion symmetry
title_sort learning from data to design functional materials without inversion symmetry
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/6caa49546c9f44e8b3a0551c932bbc54
work_keys_str_mv AT prasannavbalachandran learningfromdatatodesignfunctionalmaterialswithoutinversionsymmetry
AT joshuayoung learningfromdatatodesignfunctionalmaterialswithoutinversionsymmetry
AT turablookman learningfromdatatodesignfunctionalmaterialswithoutinversionsymmetry
AT jamesmrondinelli learningfromdatatodesignfunctionalmaterialswithoutinversionsymmetry
_version_ 1718386117739282432