Learning from data to design functional materials without inversion symmetry
Computational design of functional materials with broken inversion symmetry is a complex task. Here, the authors demonstrate an approach that integrates symmetry analysis, data science methods, and density functional theory to accelerate the selection and identification process in complex oxides.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6caa49546c9f44e8b3a0551c932bbc54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6caa49546c9f44e8b3a0551c932bbc54 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6caa49546c9f44e8b3a0551c932bbc542021-12-02T15:38:38ZLearning from data to design functional materials without inversion symmetry10.1038/ncomms142822041-1723https://doaj.org/article/6caa49546c9f44e8b3a0551c932bbc542017-02-01T00:00:00Zhttps://doi.org/10.1038/ncomms14282https://doaj.org/toc/2041-1723Computational design of functional materials with broken inversion symmetry is a complex task. Here, the authors demonstrate an approach that integrates symmetry analysis, data science methods, and density functional theory to accelerate the selection and identification process in complex oxides.Prasanna V. BalachandranJoshua YoungTurab LookmanJames M. RondinelliNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-13 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Prasanna V. Balachandran Joshua Young Turab Lookman James M. Rondinelli Learning from data to design functional materials without inversion symmetry |
description |
Computational design of functional materials with broken inversion symmetry is a complex task. Here, the authors demonstrate an approach that integrates symmetry analysis, data science methods, and density functional theory to accelerate the selection and identification process in complex oxides. |
format |
article |
author |
Prasanna V. Balachandran Joshua Young Turab Lookman James M. Rondinelli |
author_facet |
Prasanna V. Balachandran Joshua Young Turab Lookman James M. Rondinelli |
author_sort |
Prasanna V. Balachandran |
title |
Learning from data to design functional materials without inversion symmetry |
title_short |
Learning from data to design functional materials without inversion symmetry |
title_full |
Learning from data to design functional materials without inversion symmetry |
title_fullStr |
Learning from data to design functional materials without inversion symmetry |
title_full_unstemmed |
Learning from data to design functional materials without inversion symmetry |
title_sort |
learning from data to design functional materials without inversion symmetry |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/6caa49546c9f44e8b3a0551c932bbc54 |
work_keys_str_mv |
AT prasannavbalachandran learningfromdatatodesignfunctionalmaterialswithoutinversionsymmetry AT joshuayoung learningfromdatatodesignfunctionalmaterialswithoutinversionsymmetry AT turablookman learningfromdatatodesignfunctionalmaterialswithoutinversionsymmetry AT jamesmrondinelli learningfromdatatodesignfunctionalmaterialswithoutinversionsymmetry |
_version_ |
1718386117739282432 |