Learning from data to design functional materials without inversion symmetry
Computational design of functional materials with broken inversion symmetry is a complex task. Here, the authors demonstrate an approach that integrates symmetry analysis, data science methods, and density functional theory to accelerate the selection and identification process in complex oxides.
Guardado en:
Autores principales: | Prasanna V. Balachandran, Joshua Young, Turab Lookman, James M. Rondinelli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6caa49546c9f44e8b3a0551c932bbc54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accelerated search for materials with targeted properties by adaptive design
por: Dezhen Xue, et al.
Publicado: (2016) -
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
por: Prasanna V. Balachandran, et al.
Publicado: (2018) -
Fermi Surface Reconstruction without Symmetry Breaking
por: Snir Gazit, et al.
Publicado: (2020) -
Didactical Design for Overcoming Students' Learning Obstacles on the Inverse Function Concept
por: Abdul Muin, et al.
Publicado: (2021) -
Emergence of Lie Symmetries in Functional Architectures Learned by CNNs
por: Federico Bertoni, et al.
Publicado: (2021)