Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter
Conventional color filters selectively absorb a part of the backlight while reflecting or transmitting other light, resulting in the problem of low efficiency and energy wasting. For this problem, a new concept of fluorescence enhanced optical resonator was proposed and verified in this paper. The n...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cabf061f49041399207c19be994cc0c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6cabf061f49041399207c19be994cc0c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6cabf061f49041399207c19be994cc0c2021-11-25T18:30:00ZFluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter10.3390/nano111128132079-4991https://doaj.org/article/6cabf061f49041399207c19be994cc0c2021-10-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2813https://doaj.org/toc/2079-4991Conventional color filters selectively absorb a part of the backlight while reflecting or transmitting other light, resulting in the problem of low efficiency and energy wasting. For this problem, a new concept of fluorescence enhanced optical resonator was proposed and verified in this paper. The new structure consists of structural color filter and light-conversion material. Specially, a thin film resonant cavity was designed, and InP/ZnSe/ZnS quantum dots were inserted inside the resonator. When illuminated by sunlight, the novel fluorescence enhanced optical resonator could not only reflect the specific light, but also convert absorbed energy into desired light, leading to the utilization efficiency improvement of solar energy. An all-dielectric red fluorescence enhanced optical resonator was fabricated, with peak equivalent reflectance up to 105%. Compared with a thin film resonator, the enhancement coefficient of the as-proposed structure is about 124%. The new optical structure can utilize solar source efficiently, showing application potential as the next generation of reflective color filters for display.Xiaochuan ChenPengxia LiangQian WuQiaofeng TanXue DongMDPI AGarticlecolor filterquantum dotsfluorescence enhanced optical resonatorChemistryQD1-999ENNanomaterials, Vol 11, Iss 2813, p 2813 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
color filter quantum dots fluorescence enhanced optical resonator Chemistry QD1-999 |
spellingShingle |
color filter quantum dots fluorescence enhanced optical resonator Chemistry QD1-999 Xiaochuan Chen Pengxia Liang Qian Wu Qiaofeng Tan Xue Dong Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
description |
Conventional color filters selectively absorb a part of the backlight while reflecting or transmitting other light, resulting in the problem of low efficiency and energy wasting. For this problem, a new concept of fluorescence enhanced optical resonator was proposed and verified in this paper. The new structure consists of structural color filter and light-conversion material. Specially, a thin film resonant cavity was designed, and InP/ZnSe/ZnS quantum dots were inserted inside the resonator. When illuminated by sunlight, the novel fluorescence enhanced optical resonator could not only reflect the specific light, but also convert absorbed energy into desired light, leading to the utilization efficiency improvement of solar energy. An all-dielectric red fluorescence enhanced optical resonator was fabricated, with peak equivalent reflectance up to 105%. Compared with a thin film resonator, the enhancement coefficient of the as-proposed structure is about 124%. The new optical structure can utilize solar source efficiently, showing application potential as the next generation of reflective color filters for display. |
format |
article |
author |
Xiaochuan Chen Pengxia Liang Qian Wu Qiaofeng Tan Xue Dong |
author_facet |
Xiaochuan Chen Pengxia Liang Qian Wu Qiaofeng Tan Xue Dong |
author_sort |
Xiaochuan Chen |
title |
Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_short |
Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_full |
Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_fullStr |
Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_full_unstemmed |
Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter |
title_sort |
fluorescence enhanced optical resonator constituted of quantum dots and thin film resonant cavity for high-efficiency reflective color filter |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/6cabf061f49041399207c19be994cc0c |
work_keys_str_mv |
AT xiaochuanchen fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter AT pengxialiang fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter AT qianwu fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter AT qiaofengtan fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter AT xuedong fluorescenceenhancedopticalresonatorconstitutedofquantumdotsandthinfilmresonantcavityforhighefficiencyreflectivecolorfilter |
_version_ |
1718411080460402688 |