More on μ-semi-Lindelöf sets in μ-spaces

Sarsak [On μ\mu -compact sets in μ\mu -spaces, Questions Answers Gen. Topology 31 (2013), no. 1, 49–57] introduced and studied the class of μ\mu -Lindelöf sets in μ\mu -spaces. Mustafa [μ\mu -semi compactness and μ\mu -semi Lindelöfness in generalized...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sarsak Mohammad S.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/6caf0d7cd498488390c95fb0a7734fe5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6caf0d7cd498488390c95fb0a7734fe5
record_format dspace
spelling oai:doaj.org-article:6caf0d7cd498488390c95fb0a7734fe52021-12-05T14:10:45ZMore on μ-semi-Lindelöf sets in μ-spaces2391-466110.1515/dema-2021-0026https://doaj.org/article/6caf0d7cd498488390c95fb0a7734fe52021-08-01T00:00:00Zhttps://doi.org/10.1515/dema-2021-0026https://doaj.org/toc/2391-4661Sarsak [On μ\mu -compact sets in μ\mu -spaces, Questions Answers Gen. Topology 31 (2013), no. 1, 49–57] introduced and studied the class of μ\mu -Lindelöf sets in μ\mu -spaces. Mustafa [μ\mu -semi compactness and μ\mu -semi Lindelöfness in generalized topological spaces, Int. J. Pure Appl. Math. 78 (2012), no. 4, 535–541] introduced and studied the class of μ\mu -semi-Lindelöf sets in generalized topological spaces (GTSs); the primary purpose of this paper is to investigate more properties and mapping properties of μ\mu -semi-Lindelöf sets in μ\mu -spaces. The class of μ\mu -semi-Lindelöf sets in μ\mu -spaces is a proper subclass of the class of μ\mu -Lindelöf sets in μ\mu -spaces. It is shown that the property of being μ\mu -semi-Lindelöf is not monotonic, that is, if (X,μ)\left(X,\mu ) is a μ\mu -space and A⊂B⊂XA\subset B\subset X, where AA is μB{\mu }_{B}-semi-Lindelöf, then AA need not be μ\mu -semi-Lindelöf. We also introduce and study a new type of generalized open sets in GTSs, called ωμ{\omega }_{\mu }-semi-open sets, and investigate them to obtain new properties and characterizations of μ\mu -semi-Lindelöf sets in μ\mu -spaces.Sarsak Mohammad S.De Gruyterarticlegeneralized topologyμ-spaceμ-openμ-semi-openμ-lindelöf setμ-lindelöf spaceμ-semi-lindelöf setμ-semi-lindelöf space54a0554a1054d20MathematicsQA1-939ENDemonstratio Mathematica, Vol 54, Iss 1, Pp 259-271 (2021)
institution DOAJ
collection DOAJ
language EN
topic generalized topology
μ-space
μ-open
μ-semi-open
μ-lindelöf set
μ-lindelöf space
μ-semi-lindelöf set
μ-semi-lindelöf space
54a05
54a10
54d20
Mathematics
QA1-939
spellingShingle generalized topology
μ-space
μ-open
μ-semi-open
μ-lindelöf set
μ-lindelöf space
μ-semi-lindelöf set
μ-semi-lindelöf space
54a05
54a10
54d20
Mathematics
QA1-939
Sarsak Mohammad S.
More on μ-semi-Lindelöf sets in μ-spaces
description Sarsak [On μ\mu -compact sets in μ\mu -spaces, Questions Answers Gen. Topology 31 (2013), no. 1, 49–57] introduced and studied the class of μ\mu -Lindelöf sets in μ\mu -spaces. Mustafa [μ\mu -semi compactness and μ\mu -semi Lindelöfness in generalized topological spaces, Int. J. Pure Appl. Math. 78 (2012), no. 4, 535–541] introduced and studied the class of μ\mu -semi-Lindelöf sets in generalized topological spaces (GTSs); the primary purpose of this paper is to investigate more properties and mapping properties of μ\mu -semi-Lindelöf sets in μ\mu -spaces. The class of μ\mu -semi-Lindelöf sets in μ\mu -spaces is a proper subclass of the class of μ\mu -Lindelöf sets in μ\mu -spaces. It is shown that the property of being μ\mu -semi-Lindelöf is not monotonic, that is, if (X,μ)\left(X,\mu ) is a μ\mu -space and A⊂B⊂XA\subset B\subset X, where AA is μB{\mu }_{B}-semi-Lindelöf, then AA need not be μ\mu -semi-Lindelöf. We also introduce and study a new type of generalized open sets in GTSs, called ωμ{\omega }_{\mu }-semi-open sets, and investigate them to obtain new properties and characterizations of μ\mu -semi-Lindelöf sets in μ\mu -spaces.
format article
author Sarsak Mohammad S.
author_facet Sarsak Mohammad S.
author_sort Sarsak Mohammad S.
title More on μ-semi-Lindelöf sets in μ-spaces
title_short More on μ-semi-Lindelöf sets in μ-spaces
title_full More on μ-semi-Lindelöf sets in μ-spaces
title_fullStr More on μ-semi-Lindelöf sets in μ-spaces
title_full_unstemmed More on μ-semi-Lindelöf sets in μ-spaces
title_sort more on μ-semi-lindelöf sets in μ-spaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/6caf0d7cd498488390c95fb0a7734fe5
work_keys_str_mv AT sarsakmohammads moreonmsemilindelofsetsinmspaces
_version_ 1718371763696435200