Quantifying aggregated uncertainty in Plasmodium falciparum malaria prevalence and populations at risk via efficient space-time geostatistical joint simulation.
Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncerta...
Guardado en:
Autores principales: | Peter W Gething, Anand P Patil, Simon I Hay |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cb8426d16f74a2ea08891beb439fcfd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Plasmodium falciparum malaria endemicity in Indonesia in 2010.
por: Iqbal R F Elyazar, et al.
Publicado: (2011) -
Estimating the global clinical burden of Plasmodium falciparum malaria in 2007.
por: Simon I Hay, et al.
Publicado: (2010) -
A world malaria map: Plasmodium falciparum endemicity in 2007.
por: Simon I Hay, et al.
Publicado: (2009) -
G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map.
por: Rosalind E Howes, et al.
Publicado: (2012) -
Modeling within-host effects of drugs on Plasmodium falciparum transmission and prospects for malaria elimination.
por: Geoffrey L Johnston, et al.
Publicado: (2014)