Discovering latent node Information by graph attention network
Abstract In this paper, we propose graph attention based network representation (GANR) which utilizes the graph attention architecture and takes graph structure as the supervised learning information. Compared with node classification based representations, GANR can be used to learn representation f...
Guardado en:
Autores principales: | Weiwei Gu, Fei Gao, Xiaodan Lou, Jiang Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cc8b7d1e7ee475e8834cc197515f5ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluating Nodes of Latent Mediators in Heterogeneous Communities
por: Hiroko Yamano, et al.
Publicado: (2020) -
Predicting scalar coupling constants by graph angle-attention neural network
por: Jia Fang, et al.
Publicado: (2021) -
Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks.
por: Mahendra Piraveenan, et al.
Publicado: (2013) -
Dynamic graph convolutional networks with attention mechanism for rumor detection on social media.
por: Jiho Choi, et al.
Publicado: (2021) -
Discovering Latent Representations of Relations for Interacting Systems
por: Dohae Lee, et al.
Publicado: (2021)