Mapping wind erosion hazard with regression-based machine learning algorithms
Abstract Land susceptibility to wind erosion hazard in Isfahan province, Iran, was mapped by testing 16 advanced regression-based machine learning methods: Robust linear regression (RLR), Cforest, Non-convex penalized quantile regression (NCPQR), Neural network with feature extraction (NNFE), Monoto...
Guardado en:
Autores principales: | Hamid Gholami, Aliakbar Mohammadifar, Dieu Tien Bui, Adrian L. Collins |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cc90782ff3b44d1a046fcc3ff1da721 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of multi-hazard map produced using MaxEnt machine learning technique
por: Narges Javidan, et al.
Publicado: (2021) -
A multi-hazard map-based flooding, gully erosion, forest fires, and earthquakes in Iran
por: Soheila Pouyan, et al.
Publicado: (2021) -
Assessing and mapping multi-hazard risk susceptibility using a machine learning technique
por: Hamid Reza Pourghasemi, et al.
Publicado: (2020) -
Modeling and Assessing Potential Soil Erosion Hazards Using USLE and Wind Erosion Models in Integration with GIS Techniques: Dakhla Oasis, Egypt
por: Salman A. H. Selmy, et al.
Publicado: (2021) -
An Attempt to Use Machine Learning Algorithms to Estimate the Rockburst Hazard in Underground Excavations of Hard Coal Mine
por: Łukasz Wojtecki, et al.
Publicado: (2021)