Generic decoding of seen and imagined objects using hierarchical visual features
Machine learning algorithms can decode objects that people see or imagine from their brain activity. Here the authors present a predictive decoder combined with deep neural network representations that generalizes beyond the training set and correctly identifies novel objects that it has never been...
Guardado en:
Autores principales: | Tomoyasu Horikawa, Yukiyasu Kamitani |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ccae50a9ded47ada2c491896e3c5bb9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Decoding individual identity from brain activity elicited in imagining common experiences
por: Andrew James Anderson, et al.
Publicado: (2020) -
Coding of visual object features and feature conjunctions in the human brain.
por: Jasna Martinovic, et al.
Publicado: (2008) -
Salient Object Detection Using Recurrent Guidance Network With Hierarchical Attention Features
por: Shanmei Lu, et al.
Publicado: (2020) -
Multi-Hop Question Generation Using Hierarchical Encoding-Decoding and Context Switch Mechanism
por: Tianbo Ji, et al.
Publicado: (2021) -
Decoding the influence of anticipatory states on visual perception in the presence of temporal distractors
por: Freek van Ede, et al.
Publicado: (2018)