LSGAN-AT: enhancing malware detector robustness against adversarial examples
Abstract Adversarial Malware Example (AME)-based adversarial training can effectively enhance the robustness of Machine Learning (ML)-based malware detectors against AME. AME quality is a key factor to the robustness enhancement. Generative Adversarial Network (GAN) is a kind of AME generation metho...
Guardado en:
Autores principales: | Jianhua Wang, Xiaolin Chang, Yixiang Wang, Ricardo J. Rodríguez, Jianan Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cd390847dbd4392914b322c5efd1529 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deepfake-Image Anti-Forensics with Adversarial Examples Attacks
por: Li Fan, et al.
Publicado: (2021) -
Detection of illicit cryptomining using network metadata
por: Michele Russo, et al.
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
TelegramBot: Crawling Data Serangan Malware dengan Telegram
por: Faulinda Ely Nastiti, et al.
Publicado: (2019) -
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
por: Naveed Akhtar, et al.
Publicado: (2021)