LSGAN-AT: enhancing malware detector robustness against adversarial examples
Abstract Adversarial Malware Example (AME)-based adversarial training can effectively enhance the robustness of Machine Learning (ML)-based malware detectors against AME. AME quality is a key factor to the robustness enhancement. Generative Adversarial Network (GAN) is a kind of AME generation metho...
Enregistré dans:
| Auteurs principaux: | , , , , |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
SpringerOpen
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/6cd390847dbd4392914b322c5efd1529 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|