Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production
Abstract Anion exchange membrane (AEM) electrolysis is a promising solution for large-scale hydrogen production from renewable energy resources. However, the performance of AEM electrolysis is still lower than what can be achieved with conventional technologies. The performance of AEM electrolysis i...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cdc2ae542ee4445b9df72f4dce1595d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6cdc2ae542ee4445b9df72f4dce1595d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6cdc2ae542ee4445b9df72f4dce1595d2021-12-02T14:01:38ZComprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production10.1038/s41598-020-80683-62045-2322https://doaj.org/article/6cdc2ae542ee4445b9df72f4dce1595d2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80683-6https://doaj.org/toc/2045-2322Abstract Anion exchange membrane (AEM) electrolysis is a promising solution for large-scale hydrogen production from renewable energy resources. However, the performance of AEM electrolysis is still lower than what can be achieved with conventional technologies. The performance of AEM electrolysis is limited by integral components of the membrane electrode assembly and the reaction kinetics, which can be measured by ohmic and charge transfer resistances. We here investigate and then quantify the contributions of the ohmic and charge transfer resistances, and the rate-determining steps, involved in AEM electrolysis by using electrochemical impedance spectroscopy analysis. The factors that have an effect on the performance, such as voltage, flow rate, temperature and concentration, were studied at 1.5 and 1.9 V. Increased voltage, flow rate, temperature and concentration of the electrolyte strongly enhanced the anodic activity. We observed that here the anodic reaction offered a greater contribution to the overpotential than the cathode did.Immanuel VincentEun-Chong LeeHyung-Man KimNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Immanuel Vincent Eun-Chong Lee Hyung-Man Kim Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production |
description |
Abstract Anion exchange membrane (AEM) electrolysis is a promising solution for large-scale hydrogen production from renewable energy resources. However, the performance of AEM electrolysis is still lower than what can be achieved with conventional technologies. The performance of AEM electrolysis is limited by integral components of the membrane electrode assembly and the reaction kinetics, which can be measured by ohmic and charge transfer resistances. We here investigate and then quantify the contributions of the ohmic and charge transfer resistances, and the rate-determining steps, involved in AEM electrolysis by using electrochemical impedance spectroscopy analysis. The factors that have an effect on the performance, such as voltage, flow rate, temperature and concentration, were studied at 1.5 and 1.9 V. Increased voltage, flow rate, temperature and concentration of the electrolyte strongly enhanced the anodic activity. We observed that here the anodic reaction offered a greater contribution to the overpotential than the cathode did. |
format |
article |
author |
Immanuel Vincent Eun-Chong Lee Hyung-Man Kim |
author_facet |
Immanuel Vincent Eun-Chong Lee Hyung-Man Kim |
author_sort |
Immanuel Vincent |
title |
Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production |
title_short |
Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production |
title_full |
Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production |
title_fullStr |
Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production |
title_full_unstemmed |
Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production |
title_sort |
comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/6cdc2ae542ee4445b9df72f4dce1595d |
work_keys_str_mv |
AT immanuelvincent comprehensiveimpedanceinvestigationoflowcostanionexchangemembraneelectrolysisforlargescalehydrogenproduction AT eunchonglee comprehensiveimpedanceinvestigationoflowcostanionexchangemembraneelectrolysisforlargescalehydrogenproduction AT hyungmankim comprehensiveimpedanceinvestigationoflowcostanionexchangemembraneelectrolysisforlargescalehydrogenproduction |
_version_ |
1718392085948661760 |