Tumor relevant protein functional interactions identified using bipartite graph analyses
Abstract An increased surge of -omics data for the diseases such as cancer allows for deriving insights into the affiliated protein interactions. We used bipartite network principles to build protein functional associations of the differentially regulated genes in 18 cancer types. This approach allo...
Guardado en:
Autores principales: | Divya Lakshmi Venkatraman, Deepshika Pulimamidi, Harsh G. Shukla, Shubhada R. Hegde |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cee77b5d1654b368370000e93496267 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bipartite graph-based collaborative matrix factorization method for predicting miRNA-disease associations
por: Feng Zhou, et al.
Publicado: (2021) -
Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems.
por: Sagar Indurkhya, et al.
Publicado: (2010) -
Fusion of KATZ measure and space projection to fast probe potential lncRNA-disease associations in bipartite graphs.
por: Yi Zhang, et al.
Publicado: (2021) -
Bipartite theory of irredundant set
por: Swaminathan,V, et al.
Publicado: (2011) -
Modeling the spread of vector-borne diseases on bipartite networks.
por: Donal Bisanzio, et al.
Publicado: (2010)