Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement

Abstract The chelating gadolinium-complex is routinely used as magnetic resonance imaging (MRI) -contrast enhancer. However, several safety issues have recently been reported by FDA and PRAC. There is an urgent need for the next generation of safer MRI-contrast enhancers, with improved local contras...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peter Eriksson, Alexey A. Tal, Andreas Skallberg, Caroline Brommesson, Zhangjun Hu, Robert D. Boyd, Weine Olovsson, Neal Fairley, Igor A. Abrikosov, Xuanjun Zhang, Kajsa Uvdal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6cef5a9dc92a4ef697517e7ebe6f4d3c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The chelating gadolinium-complex is routinely used as magnetic resonance imaging (MRI) -contrast enhancer. However, several safety issues have recently been reported by FDA and PRAC. There is an urgent need for the next generation of safer MRI-contrast enhancers, with improved local contrast and targeting capabilities. Cerium oxide nanoparticles (CeNPs) are designed with fractions of up to 50% gadolinium to utilize the superior MRI-contrast properties of gadolinium. CeNPs are well-tolerated in vivo and have redox properties making them suitable for biomedical applications, for example scavenging purposes on the tissue- and cellular level and during tumor treatment to reduce in vivo inflammatory processes. Our near edge X-ray absorption fine structure (NEXAFS) studies show that implementation of gadolinium changes the initial co-existence of oxidation states Ce3+ and Ce4+ of cerium, thereby affecting the scavenging properties of the nanoparticles. Based on ab initio electronic structure calculations, we describe the most prominent spectral features for the respective oxidation states. The as-prepared gadolinium-implemented CeNPs are 3–5 nm in size, have r1-relaxivities between 7–13 mM−1 s−1 and show clear antioxidative properties, all of which means they are promising theranostic agents for use in future biomedical applications.