Data‐Driven Inference of the Mechanics of Slip Along Glacier Beds Using Physics‐Informed Neural Networks: Case Study on Rutford Ice Stream, Antarctica
Abstract Reliable projections of sea‐level rise depend on accurate representations of how fast‐flowing glaciers slip along their beds. The mechanics of slip are often parameterized as a constitutive relation (or “sliding law”) whose proper form remains uncertain. Here, we present a novel deep learni...
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Geophysical Union (AGU)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6cf18a304d24415f8fc32bc86dd9c0a8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|