A mutual information based R-vine copula strategy to estimate VaR in high frequency stock market data.
In this paper, we explore mutual information based stock networks to build regular vine copula structure on high frequency log returns of stocks and use it for the estimation of Value at Risk (VaR) of a portfolio of stocks. Our model is a data driven model that learns from a high frequency time seri...
Guardado en:
Autores principales: | Charu Sharma, Niteesh Sahni |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cf26294a5e149308a1dfffef7fa3c8c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generating unfavourable VaR scenarios under Solvency II with patchwork copulas
por: Pfeifer Dietmar, et al.
Publicado: (2021) -
Comparison of VaR Models to the Brazilian Stock Market Under the Hypothesis of Serial Independence in Higher Orders: Are Garch Models Really Indispensable?
por: Luiz Augusto Finger França Maluf, et al.
Publicado: (2019) -
Explaining predictive models using Shapley values and non-parametric vine copulas
por: Aas Kjersti, et al.
Publicado: (2021) -
RISK-MANAGEMENT IN THE CHILEAN BANKING INDUSTRY: IMPLEMENTING THE VaR REVOLUTION
por: CRUZ,JOSÉ MIGUEL
Publicado: (2003) -
Multi-stage Stochastic Programming Asset/Liability Management Model with VaR Constraint at the Social Security Organization
por: Kiarash Mehrani, et al.
Publicado: (2021)