A mutual information based R-vine copula strategy to estimate VaR in high frequency stock market data.

In this paper, we explore mutual information based stock networks to build regular vine copula structure on high frequency log returns of stocks and use it for the estimation of Value at Risk (VaR) of a portfolio of stocks. Our model is a data driven model that learns from a high frequency time seri...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Charu Sharma, Niteesh Sahni
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/6cf26294a5e149308a1dfffef7fa3c8c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!