Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon
In precision agriculture, the nitrogen level is significantly important for establishing phenotype, quality and yield of crops. It cannot be achieved in the future without appropriate nitrogen fertilizer application. Moreover, a convenient and real-time advance technology for nitrogen nutrition diag...
Guardado en:
Autores principales: | Liying Chang, Daren Li, Muhammad Khalid Hameed, Yilu Yin, Danfeng Huang, Qingliang Niu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cf92179863b477e842ff9ec229ec050 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Industry 4.0-Oriented Deep Learning Models for Human Activity Recognition
por: Saeed Mohsen, et al.
Publicado: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
por: Leiyu Chen, et al.
Publicado: (2021) -
Deep Learning of Simultaneous Intracranial and Scalp EEG for Prediction, Detection, and Lateralization of Mesial Temporal Lobe Seizures
por: Zan Li, et al.
Publicado: (2021) -
Detection of Preventable Fetal Distress During Labor From Scanned Cardiotocogram Tracings Using Deep Learning
por: Martin G. Frasch, et al.
Publicado: (2021) -
Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review
por: Yuanyuan Yang, et al.
Publicado: (2021)