Quantum-inspired machine learning on high-energy physics data
Abstract Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big dat...
Guardado en:
Autores principales: | Timo Felser, Marco Trenti, Lorenzo Sestini, Alessio Gianelle, Davide Zuliani, Donatella Lucchesi, Simone Montangero |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6d0b3f09c5cb4906b789bc66253206f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Novel Convolutional Restricted Boltzmann Machine manifold learning inspired dynamic user clustering hybrid precoding for millimeter-wave massive multiple-input multiple-output systems
por: Xiaoping Zhou, et al.
Publicado: (2021) -
Demonstration of quantum advantage in machine learning
por: Diego Ristè, et al.
Publicado: (2017) -
Corrigendum to “A Novel MILP Model for the Production, Lot Sizing, and Scheduling of Automotive Plastic Components on Parallel Flexible Injection Machines with Setup Common Operators”
por: Beatriz Andres, et al.
Publicado: (2021) -
Unitary-coupled restricted Boltzmann machine ansatz for quantum simulations
por: Chang Yu Hsieh, et al.
Publicado: (2021) -
Machine learning of high dimensional data on a noisy quantum processor
por: Evan Peters, et al.
Publicado: (2021)