Rufinamide (RUF) suppresses inflammation and maintains the integrity of the blood–brain barrier during kainic acid-induced brain damage

Rufinamide (RUF) is a structurally unique anti-epileptic drug, but its protective mechanism against brain injury remains unclear. In the present study, we validated how the RUF protected mice with kainic acid (KA)-induced neuronal damage. To achieve that, a mouse epilepsy model was established by KA...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Huaxu, He Bin, Han Xu, Yan Ting
Format: article
Language:EN
Published: De Gruyter 2021
Subjects:
ruf
Online Access:https://doaj.org/article/6d0d23485c104afd97f40409ac49d0b5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rufinamide (RUF) is a structurally unique anti-epileptic drug, but its protective mechanism against brain injury remains unclear. In the present study, we validated how the RUF protected mice with kainic acid (KA)-induced neuronal damage. To achieve that, a mouse epilepsy model was established by KA intraperitoneal injection. After Nissl staining, although there was a significant reduction in Nissl bodies in mice treated with KA, 40, 80, and 120 mg/kg, RUF significantly reduced KA-induced neuronal damage, in a dose-dependent manner. Among them, 120 mg/kg RUF was most pronounced. Immunohistochemistry (IHC) and western blot analysis showed that RUF inhibited the IBA-1 overexpression caused by KA to block microglia cell overactivation. Further, RUF treatment partially reversed neuroinflammatory cytokine (IL-1β, TNFα, HMGB1, and NLRP3) overexpression in mRNA and protein levels in KA mice. Moreover, although KA stimulation inhibited the expression of tight junctions, RUF treatment significantly upregulated expression of tight junction proteins (occludin and claudin 5) in both mRNA and protein levels in the brain tissues of KA mice. RUF inhibited the overactivation of microglia, suppressed the neuroinflammatory response, and reduced the destruction of blood–brain barrier, thereby alleviating the excitatory nerve damage of the KA-mice.