Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling

Abstract This paper presents a unique and formal method of quantifying the similarity or distance between sedimentary facies successions from measured sections in outcrop or drilled wells and demonstrates its first application in inverse stratigraphic modeling. A sedimentary facies succession is rep...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Taizhong Duan
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/6d198b2d5a00406db0a8bd2d2c25e74c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6d198b2d5a00406db0a8bd2d2c25e74c
record_format dspace
spelling oai:doaj.org-article:6d198b2d5a00406db0a8bd2d2c25e74c2021-12-02T08:01:37ZSimilarity measure of sedimentary successions and its application in inverse stratigraphic modeling10.1007/s12182-017-0174-11672-51071995-8226https://doaj.org/article/6d198b2d5a00406db0a8bd2d2c25e74c2017-07-01T00:00:00Zhttp://link.springer.com/article/10.1007/s12182-017-0174-1https://doaj.org/toc/1672-5107https://doaj.org/toc/1995-8226Abstract This paper presents a unique and formal method of quantifying the similarity or distance between sedimentary facies successions from measured sections in outcrop or drilled wells and demonstrates its first application in inverse stratigraphic modeling. A sedimentary facies succession is represented with a string of symbols, or facies codes in its natural vertical order, in which each symbol brings with it one attribute such as thickness for the facies. These strings are called attributed strings. A similarity measure is defined between the attributed strings based on a syntactic pattern-recognition technique. A dynamic programming algorithm is used to calculate the similarity. Inverse stratigraphic modeling aims to generate quantitative 3D facies models based on forward stratigraphic modeling that honors observed datasets. One of the key techniques in inverse stratigraphic modeling is how to quantify the similarity or distance between simulated and observed sedimentary facies successions at data locations in order for the forward model to condition the simulation results to the observed dataset such as measured sections or drilled wells. This quantification technique comparing sedimentary successions is demonstrated in the form of a cost function based on the defined distance in our inverse stratigraphic modeling implemented with forward modeling optimization.Taizhong DuanKeAi Communications Co., Ltd.articleSimilarity quantificationSedimentary successionInverse stratigraphic modelingGlobal optimilizationSyntactic approachScienceQPetrologyQE420-499ENPetroleum Science, Vol 14, Iss 3, Pp 484-492 (2017)
institution DOAJ
collection DOAJ
language EN
topic Similarity quantification
Sedimentary succession
Inverse stratigraphic modeling
Global optimilization
Syntactic approach
Science
Q
Petrology
QE420-499
spellingShingle Similarity quantification
Sedimentary succession
Inverse stratigraphic modeling
Global optimilization
Syntactic approach
Science
Q
Petrology
QE420-499
Taizhong Duan
Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling
description Abstract This paper presents a unique and formal method of quantifying the similarity or distance between sedimentary facies successions from measured sections in outcrop or drilled wells and demonstrates its first application in inverse stratigraphic modeling. A sedimentary facies succession is represented with a string of symbols, or facies codes in its natural vertical order, in which each symbol brings with it one attribute such as thickness for the facies. These strings are called attributed strings. A similarity measure is defined between the attributed strings based on a syntactic pattern-recognition technique. A dynamic programming algorithm is used to calculate the similarity. Inverse stratigraphic modeling aims to generate quantitative 3D facies models based on forward stratigraphic modeling that honors observed datasets. One of the key techniques in inverse stratigraphic modeling is how to quantify the similarity or distance between simulated and observed sedimentary facies successions at data locations in order for the forward model to condition the simulation results to the observed dataset such as measured sections or drilled wells. This quantification technique comparing sedimentary successions is demonstrated in the form of a cost function based on the defined distance in our inverse stratigraphic modeling implemented with forward modeling optimization.
format article
author Taizhong Duan
author_facet Taizhong Duan
author_sort Taizhong Duan
title Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling
title_short Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling
title_full Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling
title_fullStr Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling
title_full_unstemmed Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling
title_sort similarity measure of sedimentary successions and its application in inverse stratigraphic modeling
publisher KeAi Communications Co., Ltd.
publishDate 2017
url https://doaj.org/article/6d198b2d5a00406db0a8bd2d2c25e74c
work_keys_str_mv AT taizhongduan similaritymeasureofsedimentarysuccessionsanditsapplicationininversestratigraphicmodeling
_version_ 1718398727668891648