Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures
Abstract Autonomous materials discovery with desired properties is one of the ultimate goals for materials science, and the current studies have been focusing mostly on high-throughput screening based on density functional theory calculations and forward modeling of physical properties using machine...
Guardado en:
Autores principales: | Teng Long, Nuno M. Fortunato, Ingo Opahle, Yixuan Zhang, Ilias Samathrakis, Chen Shen, Oliver Gutfleisch, Hongbin Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6d1f4eebd57e4377b41f8f324c970e86 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multifunctional antiperovskites driven by strong magnetostructural coupling
por: Harish K. Singh, et al.
Publicado: (2021) -
Comparing crystal structures with symmetry and geometry
por: John C. Thomas, et al.
Publicado: (2021) -
Correcting the corrections for charged defects in crystals
por: Aron Walsh
Publicado: (2021) -
Computational synthesis of substrates by crystal cleavage
por: Joshua T. Paul, et al.
Publicado: (2021) -
Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg
por: Zongrui Pei, et al.
Publicado: (2017)