Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures
Abstract Autonomous materials discovery with desired properties is one of the ultimate goals for materials science, and the current studies have been focusing mostly on high-throughput screening based on density functional theory calculations and forward modeling of physical properties using machine...
Enregistré dans:
Auteurs principaux: | Teng Long, Nuno M. Fortunato, Ingo Opahle, Yixuan Zhang, Ilias Samathrakis, Chen Shen, Oliver Gutfleisch, Hongbin Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6d1f4eebd57e4377b41f8f324c970e86 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Multifunctional antiperovskites driven by strong magnetostructural coupling
par: Harish K. Singh, et autres
Publié: (2021) -
Comparing crystal structures with symmetry and geometry
par: John C. Thomas, et autres
Publié: (2021) -
Correcting the corrections for charged defects in crystals
par: Aron Walsh
Publié: (2021) -
Computational synthesis of substrates by crystal cleavage
par: Joshua T. Paul, et autres
Publié: (2021) -
Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg
par: Zongrui Pei, et autres
Publié: (2017)