Artificial Intelligence, Heuristic Biases, and the Optimization of Health Outcomes: Cautionary Optimism
The use of artificial intelligence (AI) and machine learning (ML) in clinical care offers great promise to improve patient health outcomes and reduce health inequity across patient populations. However, inherent biases in these applications, and the subsequent potential risk of harm can limit curren...
Guardado en:
Autores principales: | Michael Feehan, Leah A. Owen, Ian M. McKinnon, Margaret M. DeAngelis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6d2110e77ac846a6bb219b2d18b2c7cb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gender Bias in Artificial Intelligence: Severity Prediction at an Early Stage of COVID-19
por: Heewon Chung, et al.
Publicado: (2021) -
A simulation-optimization heuristic for configuring a selective pallet rack system
por: Vélez Gallego,Mario C, et al.
Publicado: (2012) -
Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
por: Mirjam Pot, et al.
Publicado: (2021) -
Embodied Heuristics
por: Gerd Gigerenzer
Publicado: (2021) -
Journal of experimental & theoretical artificial intelligence JETAI.
Publicado: (1989)