A transition to stable one-dimensional swimming enhances E. coli motility through narrow channels
Most biological and artificial self-propelled particles tend to be attracted by solid walls on their swimming pathways. Vizsnyiczai et al. show that, unexpectedly, confining E. coli cells inside a channel triggers stable locomotion along the channel axis once the channel is narrower than a critical...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2020
|
Subjects: | |
Online Access: | https://doaj.org/article/6d2b768f8fe64b0aa9d86b6928881b91 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Most biological and artificial self-propelled particles tend to be attracted by solid walls on their swimming pathways. Vizsnyiczai et al. show that, unexpectedly, confining E. coli cells inside a channel triggers stable locomotion along the channel axis once the channel is narrower than a critical value. |
---|