Artificial intelligence models for suspended river sediment prediction: state-of-the art, modeling framework appraisal, and proposed future research directions
River sedimentation is an important indicator for ecological and geomorphological assessments of soil erosion within any watershed region. Sediment transport in a river basin is therefore a multifaceted field yet being a dynamic task in nature. It is characterized by high stochasticity, non-linearit...
Guardado en:
Autores principales: | Hai Tao, Zainab S. Al-Khafaji, Chongchong Qi, Mohammad Zounemat-Kermani, Ozgur Kisi, Tiyasha Tiyasha, Kwok-Wing Chau, Vahid Nourani, Assefa M. Melesse, Mohamed Elhakeem, Aitazaz Ahsan Farooque, A. Pouyan Nejadhashemi, Khaled Mohamed Khedher, Omer A. Alawi, Ravinesh C. Deo, Shamsuddin Shahid, Vijay P. Singh, Zaher Mundher Yaseen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6d41e13b728b4aa988af3da02339555a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dual Water Choices: The Assessment of the Influential Factors on Water Sources Choices Using Unsupervised Machine Learning Market Basket Analysis
por: Tiyasha Tiyasha, et al.
Publicado: (2021) -
Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
por: Sujan Ghimire, et al.
Publicado: (2021) -
Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios.
por: Naser Shiri, et al.
Publicado: (2021) -
Forecasting standardized precipitation index using data intelligence models: regional investigation of Bangladesh
por: Zaher Mundher Yaseen, et al.
Publicado: (2021) -
Validity of a sponge trainer as a simple training model for percutaneous renal access
por: Ahmad M. Tawfik, et al.
Publicado: (2017)