Improving the Q Factor of an Optical Atomic Clock Using Quantum Nondemolition Measurement

Quantum nondemolition (QND) measurement is a remarkable tool for the manipulation of quantum systems. It allows specific information to be extracted while still preserving fragile quantum observables of the system. Here we apply cavity-based QND measurement to an optical lattice clock—a type of atom...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: William Bowden, Alvise Vianello, Ian R. Hill, Marco Schioppo, Richard Hobson
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2020
Materias:
Acceso en línea:https://doaj.org/article/6d5fde2e832d4247a8f075bac4a0db64
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Quantum nondemolition (QND) measurement is a remarkable tool for the manipulation of quantum systems. It allows specific information to be extracted while still preserving fragile quantum observables of the system. Here we apply cavity-based QND measurement to an optical lattice clock—a type of atomic clock with unrivaled frequency precision—preserving the quantum coherence of the atoms after readout with 80% fidelity. We apply this technique to stabilize the phase of an ultrastable laser to a coherent atomic state via a series of repeated QND measurements. We exploit the improved phase coherence of the ultrastable laser to interrogate a separate optical lattice clock, using a Ramsey spectroscopy time extended from 300 ms to 2 s. With this technique we maintain 95% contrast and observe a sevenfold increase in the clock’s Q factor to 1.7×10^{15}.