Quantum circuit cutting with maximum-likelihood tomography

Abstract We introduce maximum-likelihood fragment tomography (MLFT) as an improved circuit cutting technique for running clustered quantum circuits on quantum devices with a limited number of qubits. In addition to minimizing the classical computing overhead of circuit cutting methods, MLFT finds th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michael A. Perlin, Zain H. Saleem, Martin Suchara, James C. Osborn
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/6d690b13e5984bdc98e87c8ee6e893eb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6d690b13e5984bdc98e87c8ee6e893eb
record_format dspace
spelling oai:doaj.org-article:6d690b13e5984bdc98e87c8ee6e893eb2021-12-02T18:27:57ZQuantum circuit cutting with maximum-likelihood tomography10.1038/s41534-021-00390-62056-6387https://doaj.org/article/6d690b13e5984bdc98e87c8ee6e893eb2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00390-6https://doaj.org/toc/2056-6387Abstract We introduce maximum-likelihood fragment tomography (MLFT) as an improved circuit cutting technique for running clustered quantum circuits on quantum devices with a limited number of qubits. In addition to minimizing the classical computing overhead of circuit cutting methods, MLFT finds the most likely probability distribution for the output of a quantum circuit, given the measurement data obtained from the circuit’s fragments. We demonstrate the benefits of MLFT for accurately estimating the output of a fragmented quantum circuit with numerical experiments on random unitary circuits. Finally, we show that circuit cutting can estimate the output of a clustered circuit with higher fidelity than full circuit execution, thereby motivating the use of circuit cutting as a standard tool for running clustered circuits on quantum hardware.Michael A. PerlinZain H. SaleemMartin SucharaJames C. OsbornNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
Michael A. Perlin
Zain H. Saleem
Martin Suchara
James C. Osborn
Quantum circuit cutting with maximum-likelihood tomography
description Abstract We introduce maximum-likelihood fragment tomography (MLFT) as an improved circuit cutting technique for running clustered quantum circuits on quantum devices with a limited number of qubits. In addition to minimizing the classical computing overhead of circuit cutting methods, MLFT finds the most likely probability distribution for the output of a quantum circuit, given the measurement data obtained from the circuit’s fragments. We demonstrate the benefits of MLFT for accurately estimating the output of a fragmented quantum circuit with numerical experiments on random unitary circuits. Finally, we show that circuit cutting can estimate the output of a clustered circuit with higher fidelity than full circuit execution, thereby motivating the use of circuit cutting as a standard tool for running clustered circuits on quantum hardware.
format article
author Michael A. Perlin
Zain H. Saleem
Martin Suchara
James C. Osborn
author_facet Michael A. Perlin
Zain H. Saleem
Martin Suchara
James C. Osborn
author_sort Michael A. Perlin
title Quantum circuit cutting with maximum-likelihood tomography
title_short Quantum circuit cutting with maximum-likelihood tomography
title_full Quantum circuit cutting with maximum-likelihood tomography
title_fullStr Quantum circuit cutting with maximum-likelihood tomography
title_full_unstemmed Quantum circuit cutting with maximum-likelihood tomography
title_sort quantum circuit cutting with maximum-likelihood tomography
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/6d690b13e5984bdc98e87c8ee6e893eb
work_keys_str_mv AT michaelaperlin quantumcircuitcuttingwithmaximumlikelihoodtomography
AT zainhsaleem quantumcircuitcuttingwithmaximumlikelihoodtomography
AT martinsuchara quantumcircuitcuttingwithmaximumlikelihoodtomography
AT jamescosborn quantumcircuitcuttingwithmaximumlikelihoodtomography
_version_ 1718377983270453248