Quantum circuit cutting with maximum-likelihood tomography
Abstract We introduce maximum-likelihood fragment tomography (MLFT) as an improved circuit cutting technique for running clustered quantum circuits on quantum devices with a limited number of qubits. In addition to minimizing the classical computing overhead of circuit cutting methods, MLFT finds th...
Guardado en:
Autores principales: | Michael A. Perlin, Zain H. Saleem, Martin Suchara, James C. Osborn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6d690b13e5984bdc98e87c8ee6e893eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient modeling of superconducting quantum circuits with tensor networks
por: Agustin Di Paolo, et al.
Publicado: (2021) -
Automated optimization of large quantum circuits with continuous parameters
por: Yunseong Nam, et al.
Publicado: (2018) -
A Leader-Follower Formation Control of Multi-UAVs via an Adaptive Hybrid Controller
por: Zain Anwar Ali, et al.
Publicado: (2021) -
Low-rank density-matrix evolution for noisy quantum circuits
por: Yi-Ting Chen, et al.
Publicado: (2021) -
Adaptive quantum state tomography with neural networks
por: Yihui Quek, et al.
Publicado: (2021)