Resting brain dynamics at different timescales capture distinct aspects of human behavior
An individual’s pattern of resting state brain connectivity, as measured with fMRI, has been shown to predict cognitive and behavioral traits. Here, the authors show that different traits are predicted by different time-scales of resting state activity (dynamic vs. static).
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6d6e19657b614ee98505d40f24b67e26 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6d6e19657b614ee98505d40f24b67e26 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6d6e19657b614ee98505d40f24b67e262021-12-02T16:58:06ZResting brain dynamics at different timescales capture distinct aspects of human behavior10.1038/s41467-019-10317-72041-1723https://doaj.org/article/6d6e19657b614ee98505d40f24b67e262019-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10317-7https://doaj.org/toc/2041-1723An individual’s pattern of resting state brain connectivity, as measured with fMRI, has been shown to predict cognitive and behavioral traits. Here, the authors show that different traits are predicted by different time-scales of resting state activity (dynamic vs. static).Raphaël LiégeoisJingwei LiRu KongCsaba OrbanDimitri Van De VilleTian GeMert R. SabuncuB. T. Thomas YeoNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Raphaël Liégeois Jingwei Li Ru Kong Csaba Orban Dimitri Van De Ville Tian Ge Mert R. Sabuncu B. T. Thomas Yeo Resting brain dynamics at different timescales capture distinct aspects of human behavior |
description |
An individual’s pattern of resting state brain connectivity, as measured with fMRI, has been shown to predict cognitive and behavioral traits. Here, the authors show that different traits are predicted by different time-scales of resting state activity (dynamic vs. static). |
format |
article |
author |
Raphaël Liégeois Jingwei Li Ru Kong Csaba Orban Dimitri Van De Ville Tian Ge Mert R. Sabuncu B. T. Thomas Yeo |
author_facet |
Raphaël Liégeois Jingwei Li Ru Kong Csaba Orban Dimitri Van De Ville Tian Ge Mert R. Sabuncu B. T. Thomas Yeo |
author_sort |
Raphaël Liégeois |
title |
Resting brain dynamics at different timescales capture distinct aspects of human behavior |
title_short |
Resting brain dynamics at different timescales capture distinct aspects of human behavior |
title_full |
Resting brain dynamics at different timescales capture distinct aspects of human behavior |
title_fullStr |
Resting brain dynamics at different timescales capture distinct aspects of human behavior |
title_full_unstemmed |
Resting brain dynamics at different timescales capture distinct aspects of human behavior |
title_sort |
resting brain dynamics at different timescales capture distinct aspects of human behavior |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/6d6e19657b614ee98505d40f24b67e26 |
work_keys_str_mv |
AT raphaelliegeois restingbraindynamicsatdifferenttimescalescapturedistinctaspectsofhumanbehavior AT jingweili restingbraindynamicsatdifferenttimescalescapturedistinctaspectsofhumanbehavior AT rukong restingbraindynamicsatdifferenttimescalescapturedistinctaspectsofhumanbehavior AT csabaorban restingbraindynamicsatdifferenttimescalescapturedistinctaspectsofhumanbehavior AT dimitrivandeville restingbraindynamicsatdifferenttimescalescapturedistinctaspectsofhumanbehavior AT tiange restingbraindynamicsatdifferenttimescalescapturedistinctaspectsofhumanbehavior AT mertrsabuncu restingbraindynamicsatdifferenttimescalescapturedistinctaspectsofhumanbehavior AT btthomasyeo restingbraindynamicsatdifferenttimescalescapturedistinctaspectsofhumanbehavior |
_version_ |
1718382391307796480 |