Resting brain dynamics at different timescales capture distinct aspects of human behavior
An individual’s pattern of resting state brain connectivity, as measured with fMRI, has been shown to predict cognitive and behavioral traits. Here, the authors show that different traits are predicted by different time-scales of resting state activity (dynamic vs. static).
Guardado en:
Autores principales: | Raphaël Liégeois, Jingwei Li, Ru Kong, Csaba Orban, Dimitri Van De Ville, Tian Ge, Mert R. Sabuncu, B. T. Thomas Yeo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6d6e19657b614ee98505d40f24b67e26 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Distinct timescales for the neuronal encoding of vocal signals in a high-order auditory area
por: Aurore Cazala, et al.
Publicado: (2021) -
Change point detection with multiple alternatives reveals parallel evaluation of the same stream of evidence along distinct timescales
por: Alexa Booras, et al.
Publicado: (2021) -
Brain songs framework used for discovering the relevant timescale of the human brain
por: Gustavo Deco, et al.
Publicado: (2019) -
Advancing behavioural genomics by considering timescale
por: Clare C. Rittschof, et al.
Publicado: (2018) -
The timescales of global surface-ocean connectivity
por: Bror F. Jönsson, et al.
Publicado: (2016)