Characterizing physiological and symptomatic variation in menstrual cycles using self-tracked mobile-health data
Abstract The menstrual cycle is a key indicator of overall health for women of reproductive age. Previously, menstruation was primarily studied through survey results; however, as menstrual tracking mobile apps become more widely adopted, they provide an increasingly large, content-rich source of me...
Guardado en:
Autores principales: | Kathy Li, Iñigo Urteaga, Chris H. Wiggins, Anna Druet, Amanda Shea, Virginia J. Vitzthum, Noémie Elhadad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6dbf3df4478a4eda941ff103364754ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Learning endometriosis phenotypes from patient-generated data
por: Iñigo Urteaga, et al.
Publicado: (2020) -
Mobile app validation: a digital health scorecard approach
por: Ramy Sedhom, et al.
Publicado: (2021) -
Tracking COVID-19 using online search
por: Vasileios Lampos, et al.
Publicado: (2021) -
Measuring the effect of Non-Pharmaceutical Interventions (NPIs) on mobility during the COVID-19 pandemic using global mobility data
por: Berber T. Snoeijer, et al.
Publicado: (2021) -
Mobile Health: making the leap to research and clinics
por: Joy P. Ku, et al.
Publicado: (2021)