Deep neural network-based automatic metasurface design with a wide frequency range
Abstract Beyond the scope of conventional metasurface, which necessitates plenty of computational resources and time, an inverse design approach using machine learning algorithms promises an effective way for metasurface design. In this paper, benefiting from Deep Neural Network (DNN), an inverse de...
Guardado en:
Autores principales: | Fardin Ghorbani, Sina Beyraghi, Javad Shabanpour, Homayoon Oraizi, Hossein Soleimani, Mohammad Soleimani |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ddb4d8fd4794af39fa08837cff13b83 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Design of frequency selective surface based on Minkowski fractal and interdigital capacitance
por: Amir Khajevandi, et al.
Publicado: (2021) -
Ternary optimization for designing metasurfaces
por: Azin Hojjati, et al.
Publicado: (2021) -
Shaping electromagnetic waves using software-automatically-designed metasurfaces
por: Qian Zhang, et al.
Publicado: (2017) -
Automatic Chinese Meme Generation Using Deep Neural Networks
por: Lin Wang, et al.
Publicado: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020)