Deep neural network-based automatic metasurface design with a wide frequency range
Abstract Beyond the scope of conventional metasurface, which necessitates plenty of computational resources and time, an inverse design approach using machine learning algorithms promises an effective way for metasurface design. In this paper, benefiting from Deep Neural Network (DNN), an inverse de...
Enregistré dans:
Auteurs principaux: | Fardin Ghorbani, Sina Beyraghi, Javad Shabanpour, Homayoon Oraizi, Hossein Soleimani, Mohammad Soleimani |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6ddb4d8fd4794af39fa08837cff13b83 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Design of frequency selective surface based on Minkowski fractal and interdigital capacitance
par: Amir Khajevandi, et autres
Publié: (2021) -
Ternary optimization for designing metasurfaces
par: Azin Hojjati, et autres
Publié: (2021) -
Shaping electromagnetic waves using software-automatically-designed metasurfaces
par: Qian Zhang, et autres
Publié: (2017) -
Automatic Chinese Meme Generation Using Deep Neural Networks
par: Lin Wang, et autres
Publié: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
par: Chuanbo Wang, et autres
Publié: (2020)