A New Lightweight Convolutional Neural Network for Multi-Scale Land Surface Water Extraction from GaoFen-1D Satellite Images
Mapping land surface water automatically and accurately is closely related to human activity, biological reproduction, and the ecological environment. High spatial resolution remote sensing image (HSRRSI) data provide extensive details for land surface water and gives reliable data support for the a...
Guardado en:
Autores principales: | Yueming Duan, Wenyi Zhang, Peng Huang, Guojin He, Hongxiang Guo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6dedcaa001304bcf8375df7dc5d19a6c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Harbor Aquaculture Area Extraction Aided with an Integration-Enhanced Gradient Descent Algorithm
por: Yafeng Zhong, et al.
Publicado: (2021) -
High-Resolution Boundary Refined Convolutional Neural Network for Automatic Agricultural Greenhouses Extraction from GaoFen-2 Satellite Imageries
por: Xiaoping Zhang, et al.
Publicado: (2021) -
Hydrochemical indicators of water source and contamination in fen peatlands of varying hydrogeomorphic settings in northern and central Poland
por: Tatiana Solovey, et al.
Publicado: (2021) -
China's Gaofen-3 Satellite System and Its Application and Prospect
por: Liangbo Zhao, et al.
Publicado: (2021) -
Filosofía y vida : debate sobre José Gaos /
Publicado: (2013)