Gfi1 Loss Protects against Two Models of Induced Diabetes

<b>Background:</b> Although several approaches have revealed much about individual factors that regulate pancreatic development, we have yet to fully understand their complicated interplay during pancreas morphogenesis. Gfi1 is transcription factor specifically expressed in pancreatic ac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tiziana Napolitano, Fabio Avolio, Serena Silvano, Sara Forcisi, Anja Pfeifer, Andhira Vieira, Sergi Navarro-Sanz, Marika Elsa Friano, Chaïma Ayachi, Anna Garrido-Utrilla, Josipa Atlija, Biljana Hadzic, Jérôme Becam, Anette Sousa-De-Veiga, Magali Dodille Plaisant, Shruti Balaji, Didier F. Pisani, Magali Mondin, Philippe Schmitt-Kopplin, Ez-Zoubir Amri, Patrick Collombat
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/6dfa825751eb42d887fe5a34c8b254f2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<b>Background:</b> Although several approaches have revealed much about individual factors that regulate pancreatic development, we have yet to fully understand their complicated interplay during pancreas morphogenesis. Gfi1 is transcription factor specifically expressed in pancreatic acinar cells, whose role in pancreas cells fate identity and specification is still elusive. <b>Methods:</b> In order to gain further insight into the function of this factor in the pancreas, we generated animals deficient for <i>Gfi1</i> specifically in the pancreas. <i>Gfi1</i> conditional knockout animals were phenotypically characterized by immunohistochemistry, RT-qPCR, and RNA scope. To assess the role of Gfi1 in the pathogenesis of diabetes, we challenged <i>Gfi1</i>-deficient mice with two models of induced hyperglycemia: long-term high-fat/high-sugar feeding and streptozotocin injections. <b>Results:</b> Interestingly, mutant mice did not show any obvious deleterious phenotype. However, in depth analyses demonstrated a significant decrease in pancreatic <i>amylase</i> expression, leading to a diminution in intestinal carbohydrates processing and thus glucose absorption. In fact, <i>Gfi1</i>-deficient mice were found resistant to diet-induced hyperglycemia, appearing normoglycemic even after long-term high-fat/high-sugar diet. Another feature observed in mutant acinar cells was the misexpression of ghrelin, a hormone previously suggested to exhibit anti-apoptotic effects on β-cells in vitro. Impressively, <i>Gfi1</i> mutant mice were found to be resistant to the cytotoxic and diabetogenic effects of high-dose streptozotocin administrations, displaying a negligible loss of β-cells and an imperturbable normoglycemia. <b>Conclusions:</b> Together, these results demonstrate that Gfi1 could turn to be extremely valuable for the development of new therapies and could thus open new research avenues in the context of diabetes research.