Study of global transcriptional changes of N-GlcNAc2 proteins-producing T24 bladder carcinoma cells under glucose deprivation.

Increased levels of N-linked (β-N- acetylglucosamine)2 [N-GlcNAc2]-modified proteins have been recognized to be an effective response to glucose deprivation. In the first step of this study, using a next generation sequencer, we investigated the global transcriptional changes induced by glucose depr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Takahiro Isono, Tokuhiro Chano, Hidetoshi Okabe, Masafumi Suzaki
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6e005975e0484845aa28d86312dd7a55
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Increased levels of N-linked (β-N- acetylglucosamine)2 [N-GlcNAc2]-modified proteins have been recognized to be an effective response to glucose deprivation. In the first step of this study, using a next generation sequencer, we investigated the global transcriptional changes induced by glucose deprivation in a T24 bladder carcinoma cell line, producing N-GlcNAc2-modified proteins under glucose deprivation. Our transcriptome analysis revealed significant up-regulation of the UDP-GlcNAc biosynthesis pathway and unfolded protein response genes, and down-regulation of G2/M transition-related genes containing mitotic kinases. Our biological analysis confirmed that N-GlcNAc2-modified proteins were localized with BiP proteins in the ER. G2/M arrest was caused by glucose deprivation in T24 cells. Moreover, the knockdown of unfolded protein response genes induced the expressional recovery of mitotic kinases under glucose deprivation. Taken together, our results suggest N-GlcNAc2-modified proteins produced under glucose deprivation caused unfolded protein response in the ER, and that this response induced G2/M arrest.