An Explainable Approach Based on Emotion and Sentiment Features for Detecting People with Mental Disorders on Social Networks
Mental disorders are a global problem that widely affects different segments of the population. Diagnosis and treatment are difficult to obtain, as there are not enough specialists on the matter, and mental health is not yet a common topic among the population. The computer science field has propose...
Enregistré dans:
Auteurs principaux: | Leslie Marjorie Gallegos Salazar, Octavio Loyola-González, Miguel Angel Medina-Pérez |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6e0cd10cfb1a43de9a39636a3714fa43 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets
par: Gabriel Ichcanziho Pérez-Landa, et autres
Publié: (2021) -
Fine-Grained Sentiment Analysis of Arabic COVID-19 Tweets Using BERT-Based Transformers and Dynamically Weighted Loss Function
par: Nora Alturayeif, et autres
Publié: (2021) -
Social Botomics: A Systematic Ensemble ML Approach for Explainable and Multi-Class Bot Detection
par: Ilias Dimitriadis, et autres
Publié: (2021) -
Weibo Text Sentiment Analysis Based on BERT and Deep Learning
par: Hongchan Li, et autres
Publié: (2021) -
Understanding Customers’ Transport Services with Topic Clustering and Sentiment Analysis
par: Alejandro Moreno, et autres
Publié: (2021)