An Explainable Approach Based on Emotion and Sentiment Features for Detecting People with Mental Disorders on Social Networks
Mental disorders are a global problem that widely affects different segments of the population. Diagnosis and treatment are difficult to obtain, as there are not enough specialists on the matter, and mental health is not yet a common topic among the population. The computer science field has propose...
Guardado en:
Autores principales: | Leslie Marjorie Gallegos Salazar, Octavio Loyola-González, Miguel Angel Medina-Pérez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e0cd10cfb1a43de9a39636a3714fa43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets
por: Gabriel Ichcanziho Pérez-Landa, et al.
Publicado: (2021) -
Fine-Grained Sentiment Analysis of Arabic COVID-19 Tweets Using BERT-Based Transformers and Dynamically Weighted Loss Function
por: Nora Alturayeif, et al.
Publicado: (2021) -
Social Botomics: A Systematic Ensemble ML Approach for Explainable and Multi-Class Bot Detection
por: Ilias Dimitriadis, et al.
Publicado: (2021) -
Weibo Text Sentiment Analysis Based on BERT and Deep Learning
por: Hongchan Li, et al.
Publicado: (2021) -
Understanding Customers’ Transport Services with Topic Clustering and Sentiment Analysis
por: Alejandro Moreno, et al.
Publicado: (2021)