A new biomechanical classification system for split fractures of the humeral greater tuberosity: guidelines for surgical treatment
Abstract Background Split fractures of the humeral greater tuberosity (HGT) are common injuries. Although there are numerous surgical treatments for these fractures, no classification system combining clinical and biomechanical characteristics has been presented to guide the choice of fixation metho...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e2b555018b74269896b75dc5e9443c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6e2b555018b74269896b75dc5e9443c0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6e2b555018b74269896b75dc5e9443c02021-11-28T12:27:08ZA new biomechanical classification system for split fractures of the humeral greater tuberosity: guidelines for surgical treatment10.1186/s13018-021-02839-y1749-799Xhttps://doaj.org/article/6e2b555018b74269896b75dc5e9443c02021-11-01T00:00:00Zhttps://doi.org/10.1186/s13018-021-02839-yhttps://doaj.org/toc/1749-799XAbstract Background Split fractures of the humeral greater tuberosity (HGT) are common injuries. Although there are numerous surgical treatments for these fractures, no classification system combining clinical and biomechanical characteristics has been presented to guide the choice of fixation method. Methods We created a standardised fracture of the HGT in 24 formalin-fixed cadavers. Six were left as single-fragment fractures (Group A), six were further prepared to create single-fragment with medium size full-thickness rotator cuff tear (FT-RCT) fractures (Group B), six were cut to create multi-fragment fractures (Group C), and six were cut to create multi-fragment with FT-RCT fractures (Group D). Each specimen was fixed with a shortened proximal humeral internal locking system (PHILOS) plate. The fixed fractures were subjected to load and load-to-failure tests and the differences between groups analysed. Results The mean load-to-failure values were significantly different between groups (Group A, 446.83 ± 38.98 N; Group B, 384.17 ± 36.15 N; Group C, 317.17 ± 23.32 N and Group D, 266.83 ± 37.65 N, P < 0.05). The load-to-failure values for fractures with a greater tuberosity displacement of 10 mm were significantly different between each group (Group A, 194.00 ± 29.23 N; Group B, 157.00 ± 29.97 N; Group C, 109.00 ± 17.64 N and Group D, 79.67.83 ± 15.50 N; P < 0.05). These findings indicate that fractures with a displacement of 10 mm have different characteristics and should be considered separately from other HGT fractures when deciding surgical treatment. Conclusions Biomechanical classification of split fractures of the HGT is a reliable method of categorising these fractures in order to decide surgical treatment. Our findings and proposed system will be a useful to guide the choice of surgical technique for the treatment of fractures of the HGT.Gang LiuXiaoguang GuoQian ZhaoBo QinJunjie LuDingsu BaoShijie FuBMCarticleHumeral greater tuberositySplit fractureBiomechanical classificationRotator cuff tearSurgical techniqueOrthopedic surgeryRD701-811Diseases of the musculoskeletal systemRC925-935ENJournal of Orthopaedic Surgery and Research, Vol 16, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Humeral greater tuberosity Split fracture Biomechanical classification Rotator cuff tear Surgical technique Orthopedic surgery RD701-811 Diseases of the musculoskeletal system RC925-935 |
spellingShingle |
Humeral greater tuberosity Split fracture Biomechanical classification Rotator cuff tear Surgical technique Orthopedic surgery RD701-811 Diseases of the musculoskeletal system RC925-935 Gang Liu Xiaoguang Guo Qian Zhao Bo Qin Junjie Lu Dingsu Bao Shijie Fu A new biomechanical classification system for split fractures of the humeral greater tuberosity: guidelines for surgical treatment |
description |
Abstract Background Split fractures of the humeral greater tuberosity (HGT) are common injuries. Although there are numerous surgical treatments for these fractures, no classification system combining clinical and biomechanical characteristics has been presented to guide the choice of fixation method. Methods We created a standardised fracture of the HGT in 24 formalin-fixed cadavers. Six were left as single-fragment fractures (Group A), six were further prepared to create single-fragment with medium size full-thickness rotator cuff tear (FT-RCT) fractures (Group B), six were cut to create multi-fragment fractures (Group C), and six were cut to create multi-fragment with FT-RCT fractures (Group D). Each specimen was fixed with a shortened proximal humeral internal locking system (PHILOS) plate. The fixed fractures were subjected to load and load-to-failure tests and the differences between groups analysed. Results The mean load-to-failure values were significantly different between groups (Group A, 446.83 ± 38.98 N; Group B, 384.17 ± 36.15 N; Group C, 317.17 ± 23.32 N and Group D, 266.83 ± 37.65 N, P < 0.05). The load-to-failure values for fractures with a greater tuberosity displacement of 10 mm were significantly different between each group (Group A, 194.00 ± 29.23 N; Group B, 157.00 ± 29.97 N; Group C, 109.00 ± 17.64 N and Group D, 79.67.83 ± 15.50 N; P < 0.05). These findings indicate that fractures with a displacement of 10 mm have different characteristics and should be considered separately from other HGT fractures when deciding surgical treatment. Conclusions Biomechanical classification of split fractures of the HGT is a reliable method of categorising these fractures in order to decide surgical treatment. Our findings and proposed system will be a useful to guide the choice of surgical technique for the treatment of fractures of the HGT. |
format |
article |
author |
Gang Liu Xiaoguang Guo Qian Zhao Bo Qin Junjie Lu Dingsu Bao Shijie Fu |
author_facet |
Gang Liu Xiaoguang Guo Qian Zhao Bo Qin Junjie Lu Dingsu Bao Shijie Fu |
author_sort |
Gang Liu |
title |
A new biomechanical classification system for split fractures of the humeral greater tuberosity: guidelines for surgical treatment |
title_short |
A new biomechanical classification system for split fractures of the humeral greater tuberosity: guidelines for surgical treatment |
title_full |
A new biomechanical classification system for split fractures of the humeral greater tuberosity: guidelines for surgical treatment |
title_fullStr |
A new biomechanical classification system for split fractures of the humeral greater tuberosity: guidelines for surgical treatment |
title_full_unstemmed |
A new biomechanical classification system for split fractures of the humeral greater tuberosity: guidelines for surgical treatment |
title_sort |
new biomechanical classification system for split fractures of the humeral greater tuberosity: guidelines for surgical treatment |
publisher |
BMC |
publishDate |
2021 |
url |
https://doaj.org/article/6e2b555018b74269896b75dc5e9443c0 |
work_keys_str_mv |
AT gangliu anewbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT xiaoguangguo anewbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT qianzhao anewbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT boqin anewbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT junjielu anewbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT dingsubao anewbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT shijiefu anewbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT gangliu newbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT xiaoguangguo newbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT qianzhao newbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT boqin newbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT junjielu newbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT dingsubao newbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment AT shijiefu newbiomechanicalclassificationsystemforsplitfracturesofthehumeralgreatertuberosityguidelinesforsurgicaltreatment |
_version_ |
1718407960873402368 |