Supremum of block entanglement for symmetric Gaussian states

Abstract For a system composed of permutationally symmetric Gaussian modes, by identifying the boundary of valid states and making necessary change of variables, the existence and exact value of the supremum of logarithmic negativity (and negativity likewise) between any two blocks can be shown anal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jhih-Yuan Kao, Chung-Hsien Chou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6e2c849a521e450983012ac770da192f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract For a system composed of permutationally symmetric Gaussian modes, by identifying the boundary of valid states and making necessary change of variables, the existence and exact value of the supremum of logarithmic negativity (and negativity likewise) between any two blocks can be shown analytically. Involving only the total number of interchangeable modes and the sizes of respective blocks, this result is general and easy to be applied for such a class of states.